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1 Introduction

An orthogonal pair in a semisimple Lie algebra is a pair of Cartan subalgebras which are orthogonal with
respect to the Killing form. Description of orthogonal pairs in a given Lie algebra is an important step in
the classification of orthogonal decompositions, i.e. decompositions of the Lie algebra into the sum of Cartan
subalgebras pairwise orthogonal with respect to the Killing form.

Orthogonal decompositions come up firstly in the theory of integer lattices in the paper by Thompson [14].
Then the theory of such bases was substentially developed by mathematicians [9]. The classification problem
of orthogonal pairs in sl(n) is closely related to the classification of complex Hadamard matrices of order n [9],
[2].

Independently, a unitary version of orthogonal pairs appeared in quantum theory under the name of mutually
unbiased bases [2], objects of constant use in Quantum Information Theory, Quantum Tomography, etc. This
makes a link of the subject to various vibrant probelms in Mathematical Physics.

One of the reasons why mutually unbiased bases are important in practice is that they provide a crucial
mathematical tool that allows to transfer quantum information with minimal loss of it in the channel. Reliable
protocols in quantum channels, such as protocol BB84, are based on a choice of maximal number of mutually
unbiased bases in the relevant vector space of quantum states of transmited particles. Protocol BB84, which
utilize 3 such bases in a 2 dimensional vector space, allows us to significantly extend the distance between the
source and the receiver of quantum information. Clearly, big number of bases in a higher dimensional spaces is
of tremendous importance in constructing reliable protocols in quantum channels.

Also, in quantum teleportation, it is important to check the result of purity of teleportation by means of
Quantum Tomography. The Quantum Tomography with minimal error bar is again based on mutually unbiased
bases.

Despite of simple definition, the classification of orthogonal pairs is a very hard problem of algebraic geometric
origin. We will consider pairs in the Lie algebra sl(n,C). According to the famous Winnie-the-Pooh conjecture
[7], orthotogonal decompositions are possible in this algebra when n is a power of prime number only. This
suggests the idea that the behavior of the objects under the study strongly depend on the arithmetic properties
of the number n. For n = 1, 2, 3, there is a unique, up to natural symmetries, orthogonal pair. For n = 5, there
are three of them [8], [11], while, for n = 4 (the first non-prime integer), there is a one dimensional family of
pairs parameterized by a rational curve.

The first positive integer which is not a power of prime is n = 6. Winnie-the-Pooh conjecture is open even for
this case. Researchers in the quantum information theory have independently come to the unitary version of the
Winnie-the-Pooh conjecture, which claims non-existence of n+ 1 mutually unbiased bases in the n-dimensional
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complex space [7] when n is not a power of prime. The case n = 6 is the subject of problem number 13 in the
popular list of problems in Quantum Information Theory [12].

In this paper we construct a 4-dimensional family of orthogonal pairs in Lie algebra sl(6,C). The existence
of such a family was conjectured by the authors (unpublished) and independently by mathmatical physicists
[13],[10]. Despite of many efforts the proof of the existence of the family was not available until now.

In [1], we interpreted orthogonal pairs and decompositions as representations of the algebra B(Γ) for a
suitable choice of graph Γ (see section 2). These algebras are so-called homotopes of the Poincare groupoids of
graph Γ considered as a topological space. In the course of the prove of the main result of the paper, we present
various relevant algebras as free products of two algebras over a third one and explore these facts for describing
the moduli spaces of their representations.

The key point in the proof is, probably, section 7, where we consider the moduli spaces, X, of 6 dimensional
representations of B(Γ), where Γ is a full bipartite graph of length (3, 3). We define 3 functions on X which
determine a map X → U , where U is a three dimensional affine space. The advantage of this map is that the
original problem of describing orthogonal pairs in sl(6,C) can be interpreted in terms of gluing four copies of
X in such a way that everything is basically done over U . If A is a 6 × 6 matrix that conjugates one Cartan
subalgebra in the orthogonal pair to the other one, then this is about presenting this matrix in 4 blocks of
3 × 3 matrices. This reduces the problem to the study of the fibres of the above map. After factorization by
permutation group S3 × S3, the fibre is actually isomorphic to (an open affine subset in) two disjoint copies of
an elliptic curve.

This leads us to study of the geometry of the elliptic fibration. Namely, we study the interplay of relevant
involutions acting on the elliptic fibres. This part is based on heavy use of algebraic geometry. Eventually, it
allows us to show the existence of the 4-dimensional family. Note that the proof is based on formula 174 which
probably needs more conceptual explanation than just verification.

In order to study the moduli space of representations of B(Γ), we introduce more general algebra Pr(Γ).
This algebra is a homotope of the path algebra of the double quiver QΓ constructed from graph Γ by replacing
every edge of Γ by two arrows with opposite orientation. Algebra Pr(Γ) is generated by idempotents xv labelled
by the vertices of Γ. They satisfy relations which are weaker than those for algebra B(Γ). The moduli spaces
of representations for Pr(Γ) is naturally fibered over the moduli of representations for B(Γ).

Orthogonal pairs in sl(n) correspond to representations for algebra B(Γ) where Γ is the complete bipartite
graphs Γn,n. We study algebra Pr(Γk,n) for complete bipartite graph Γk,n. We consider a quotient of Pr(Γk,n)
which we denote by Pk,n. We prove that representation spaces and moduli varieties for Pr(Γk,n) and Pk,n are
smooth and irreducible. We calculate the dimensions of these varieties. Also, we prove that algebra Pk,n is a free
product of algebras of Pr of smaller bipartite graphs over algebra Pr(Γk,1). We show birational equivalence of
representation spaces and moduli varieties for Pr(Γk,n) and fibred product of representation spaces and moduli
varieties for Pr’s of smaller bipartite graphs over moduli variety of Pr(Γk,1).

Then we consider algebras Bk,n which are similar quotients of B(Γk,n). We use results on algebra Pr(Γk,n)
to get similar results for B(Γk,n). Analogously, We prove that Bn,n and Bk,n are free products of B’s of smaller

bipartite graphs over some algebras An and Ãk, respectively. We get a birational equivalence of representation
spaces and moduli varieties for B(Γk,n) and fibred product similar to the case of Pr.

We construct Morita equivalence of the algebra An awith the deformed preprojective algebra for arbitrary
quiver. The deformed preprojective algebras are intensively studied by many authors (cf. [5], [3]). Using a result
of Crawley-Boewey [4], we check the required conditions for representation space and moduli space for Bn,n.
Thus, we get an important fact, a birational equivalence of the moduli space for Bn,n and the fibred product
of B’s of smaller bipartite graphs over moduli variety of An. Moreover, using properties of flat morphisms, we
get a similar birational equivalence for Bk,n.

At the end of the paper, we construct a birational immersion of the moduli space for An into the fibred
product of Ãk. Together with some other technical results this allows us to finish the proof.
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2 Basic definitions and preliminary results.

Firstly, in this section we formulate definitions of orthogonal pair in Lie algebra, generalized hadamard matrices,
their connection. Also, we remind the famous Winnie-the-Pooh conjecture formulated by Kostrikin et all in [].
In the second subsection we recall the notion of algebraic unbiasedness and mutually unbiased basis in Hermitian
space. In the third subsection we formulate the definition of reduced Temperley-Lieb algebra of graph. Also, we
light the connection between orthogonal pairs (decompositions) and representations of temperley-Lieb algebra
of arbitrary graph. In the fourth subsection we introduce the algebra Pr(Γ) the generalization of B(Γ). Also,
we formulate some trivial properties of Pr(Γ). In the last subsection we recall the notion of representation space
and moduli variety and note some properties of these objects. For fixed algebra C, we will consider moduli
varieties of two types: representation space, i.e. space of all algebraic homomorphisms from C to Mn(F ), and
moduli variety, i.e quotient of representation space by natural PGLn(F ) - action.

2.1 Orthogonal Cartan subalgebras and generalized Hadamard matrices.

Consider a simple Lie algebra L over an algebraically closed field F of characteristic zero. Let K be the
Killing form on L. In 1960, J.G.Thompson, in course of constructing integer quadratic lattices with interesting
properties, introduced the following definitions.

Definition. Two Cartan subalgebras H1 and H2 in L are said to be orthogonal if K(h1, h2) = 0 for all
h1 ∈ H1, h2 ∈ H2.

There is the classification problem for pair of Cartan subalgebras in sl(n). Reader could find some previous
results about this problem and closely related problem of classification of generalized Hadamard matrices later.

Definition. Decomposition of L into the direct sum of Cartan subalgebras L = ⊕h+1
i=1 Hi is said to be

orthogonal if Hi is orthogonal to Hj , for all i 6= j.
We will study pair of orthogonal Cartan subalgebras of sl(n) and orthogonal decompositions of sl(n) up to

action of GLn(F ) by conjugation.
Intensive study of orthogonal decompositions has been undertaken since then (see the book ?? and references

therein). For Lie algebra sl(n), A.I. Kostrikin and co-authors ?? arrived to the following conjecture, called
Winnie-the-Pooh Conjecture (cf. ibid. where, in particular, the name of the conjecture is explained by a
wordplay in the Milne’s book in Russian translation).

Conjecture 1. Lie algebra sl(n) has an orthogonal decomposition if and only if n = pm, for a prime number
p.

The conjecture has proved to be notoriously difficult. Even the non-existence of an orthogonal decomposition
for sl(6), when n = 6 is the first number which is not a prime power is still open.

Further, let us recall the connection between orthogonal pairs in sl(n) and generalized Hadamard matrices
of order n. Firstly, remind the definition of generalized Hadamard matrices. Let N be the set of n×n matrices
with non-zero entries. A matrix A = {aij} from N is said to be a generalized Hadamard matrix if

n∑
j=1

aij
akj

= 0. (1)

for all i 6= k.
This condition can be recast by means of Hadamard involution h : N → N defined by

h : aij 7→
1

naji
. (2)

Proposition 2. A is a generalized Hadamard matrix if and only if A is invertible and h(A) = A−1.

Proof. Indeed, (1) is equivalent to A · h(A) = 1.
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Remark. Sometimes, generalized Hadamard matrices are named as Type-‖ matrices (cf. [?]) or orthogonal-
inverse matrices (cf. []).

For any two Cartan subalgebras in a simple Lie algebra, one is known to be always a conjugate of the other
by an automorphism of the Lie algebra. For the case of sl(n), Cartan subalgebras are conjugate by an element
of GLn(F ), i.e. if (H,H ′) is pair of Cartan subalgebras, then H ′ = AHA−1, for A ∈ GLn(F ). The transition
matrix A is uniquely defined when we fix basis {ei} and {fi} such that H consists of diagonal matrices in the
first basis and H ′ does in the second basis. The freedom of choice for one basis is given by the normalizer in
GLn(F ) of one Cartan subalgebra, i.e. the group of monomial matrices. Therefore, the transition matrix A is
defined up to transformations

A′ = M1AM2, (3)

where M1 and M2 are invertible monomial matrices.

Proposition 3. [?] Two Cartan subalgebras H and AHA−1 form an orthogonal pair of Cartan subalgebras in
sl(n) if and only if A is a generalized Hadamard matrix.

2.2 Algebraic unbiasedness and mutually unbiased bases and configurations of
lines in a Hermitian space

In this subsection, we will remind the notion of algebraic unbiasedness, mutually unbiased bases and complex
Hadamard matrices.

Two minimal (i.e. rank 1) projectors p and q in V are said to be algebraically unbiased if

tr(pq) =
1

n
(4)

Equivalently, this reads as one of the two (equivalent) algebraic relations:

pqp =
1

n
p, (5)

qpq =
1

n
q. (6)

We will also consider orthogonal projectors. Orthogonality of p and q is algebraically expressed as

pq = qp = 0 (7)

Two maximal (i.e. of cardinality n) sets of minimal orthogonal projectors (p1, ..., pn) and (q1, ..., qn) are said
to be algebraically unbiased if pi and qj are algebraically unbiased for all pairs (i, j).

Let sl(V ) be the Lie algebra of traceless operators in V . Killing form is given by the trace of product of
operators. A Cartan subalgebra H in V defines a unique maximal set of minimal orthogonal projectors in V .
Indeed, H can be extended to the Cartan subalgebra H ′ in gl(V ) spanned by H and the identity operator E.
Rank 1 projectors in H ′ are pairwise orthogonal and comprise the required set. We say that these projectors
are associated to H.

If p is a minimal projector in H ′, then trace of p is 1, hence, p − 1
nE is in H. If projectors p and q are

associated to orthogonal Cartan subalgebras, then

Tr(p− 1

n
E)(q − 1

n
E) = 0,

which is equivalent to p and q to be algebraically unbiased.
Therefore, an orthogonal pair of Cartan subalgebras is in one-to-one correspondence with two algebraically

unbiased maximal sets of minimal orthogonal projectors. Similarly, orthogonal decompositions of sl(n) corre-
spond to n+ 1 of pairwise algebraically unbiased sets of minimal orthogonal projectors. This will lead us to the
representation theory of reduced Temperley-Lieb algebras which we study in the next section.
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More explicitly, algebraic unbiasedness can be expressed as follows. Let projectors p and q be given as

p = e⊗ x, q = f ⊗ y,

where e and f are in V and x and y are in V ∗. The equations p2 = p and q2 = q imply:

(e, x) = 1, (f, y) = 1, (8)

where (−,−) stands for the pairing between vectors and covectors. Then the algebraic unbiasedness of p and q
reads:

(x, f)(y, e) =
1

n
. (9)

Orthogonality conditions (7) reads:
(x, f) = 0, (y, e) = 0. (10)

The terminology of unbiased bases first appeared in physics. It is a unitary version of the algebraic unbi-
asedness introduced above.

Let V be an n dimensional complex space with a fixed Hermitian metric 〈 , 〉. Two orthonormal Hermitian
bases {ei} and {fj} in V are mutually unbiased if, for all (i, j),

|〈ei, fj〉|2 =
1

n
(11)

Consider the orthogonal projectors pi and qj , corresponding to these bases, defined by:

pi(−) = ei ⊗ 〈−, ei〉, qj(−) = fj ⊗ 〈−, fj〉.

Then, the condition (9) is satisfied for them, hence they are algebraically unbiased. Note that these operators
are rank 1 Hermitian projectors, and, being such, are defined by non-zero vectors in their images. We say that
two rank 1 projectors are unbiased if they are algebraically unbiased Hermitian projectors.

We can regard algebraic unbiasedness as the complexification of unbiasedness. ???? Fix a Hermitian form
on V . The Hermitian involution gives a new duality on the set of algebraic configurations:

pi 7→ p†i (12)

As we know(??), the duality induces an anti-holomorphic involution on the variety of algebraically unbiased
minimal projectors.

Since mutually unbiased bases are algebraically unbiased, they are related to orthogonal Cartan subalgebras
in sl(n). Given m pairwise mutually unbiased bases B1,B2, ...,Bm in a Hermitian space V , we obtain m
Cartan subalgebras H1, H2, ...,Hm in sl(n) which are pairwise orthogonal with respect to the Killing form. In
particular, a collection of n+ 1 mutually unbiased bases in a Hermitian vector space of dimension n gives rise
to an orthogonal decomposition of sl(n). This fact was noticed by P.Oscar Boykin, Pham Huu Tiep, Meera
Sitharam and Pawel Wocjan in [2].

Let B an orthonormal basis in Cn. Matrix A = (aij) is said to be complex Hadamard if bases B and A(B)
are mutually unbiased. Let A and C be a complex Hadamard matrices. We will say that A is equivalent to C
if A = M1CM2 for some unitary monomial matrices M1,M2.

There exists the following relation between complex Hadamard matrices and generalized Hadamard ones:
A is a complex Hadamard if and only if A is a generalized Hadamard and |aij | = 1. As we know, there is an
anti-holomorphic involution on the variety of generalized Hadamard matrices. Fixed points of this involution
is a variety of complex Hadamard matrices. Therefore, if we construct d-dimensional complex algebraic variety
of generalized Hadamard matrices, then we get d-dimensional real variety of complex Hadamard matrices.
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2.3 Reduced Temperley-Lieb algebra of graph Br(Γ), orthogonal pairs and decom-
positions in sl(n).

The above discussion of the problem on orthogonal decompositions and algebraically unbiased projectors moti-
vates the study of representation theory for algebras B(Γ), which we introduce here. Under some specialization
of parameters, these algebras become quotients of more familiar Temperley-Lieb algebras of graphs. The latter
are, in their turn, quotients of Hecke algebras of graphs.

Let Γ be a connected simply laced graph with no loop (i.e. no edge with coinciding ends). Denote by V (Γ)
and E(Γ) the sets of vertices and edges of the graph. Let K be a commutative ring K = F [r, r−1], where F is a
field of characteristic zero. We define reduced Temperley-Lieb algebra B(Γ) as a unital algebra over Generators
xi of B(Γ), except for 1, are numbered by all vertices i of Γ. They subject relations:

• x2
i = xi, for every i in V (Γ),

• xixjxi = rxi, xjxixj = rxj , if i and j are adjacent in Γ,

• xixj = xjxi = 0, if there is no edge connecting i and j in Γ.

For fixed r ∈ F ∗, we will use the notation Br(Γ). Clearly, any automorphism of graph Γ induces automorphism
of algebra B(Γ). It can be shown that algebra B(Γ) is a quotient of Temperley-Lieb algebra TL(Γ) of graph Γ
(cf.??).

Fix rij ∈ F ∗ for any non-oriented edge (ij). Denote by r the collection of all rij . Consider algebra Br(Γ).
Namely, for fixed rij ∈ F ∗, let us define the algebra Br(Γ) as unital algebra with generators xv labeled by
vertices of Γ with relations:

• x2
i = xi for every i ∈ V (Γ),

• xixjxi = rijxi, xjxixj = rijxj for adjacent vertices i, j,

• xixj = xjxi = 0 for non-adjacent vertices i, j.

It is clear that if rij are the same for all edges ij and is r then Br(Γ) = Br(Γ).
Using relations and connectedness of graph Γ, we get that ranks of generators xi under any representation

are the same. We will say that representation % of Br(Γ) has rank d iff rank of some (and hence all) xi is d.
We will study non-trivial representations of algebra B(Γ) (i.e. representations of positive rank).

It is easy that group Aut(Γ) acts on the variety of representations of B(Γ). Denote by Γm(n) the graph
with m rows by n vertices in each row. Two vertices are adjacent iff they are in different rows. It is clear that
automorphism group of Γm(n) is the wreath product of symmetric groups Sn oSm. Also, we will consider direct
product of symmetric groups S×mn acting by permutations of vertices lying in the same rows. Thus, we can
formulate the following theorem:

Theorem 4. • Non-ordered set of m orthogonal Cartan subalgebras H0,...,Hm−1 of sl(n) are in bijective
correspondence with Sn o Sm-orbits of n-dimensional representations of the algebra B 1

n
(Γm(n)).

• Ordered set of m orthogonal Cartan subalgebras H0,...,Hm−1 of sl(n) are in bijective correspondence with
S×mn -orbits of n-dimensional representations of the algebra B 1

n
(Γm(n)). We have analogous statement for

GLn(F )-quotients:

• GLn(F )-orbits of non-ordered set of m orthogonal Cartan subalgebras H0,...,Hm−1 of sl(n) are in bijective
correspondence with Sn o Sm-orbits of n-dimensional modules of the algebra B 1

n
(Γm(n)).

• GLn(F )-orbits of ordered set of m orthogonal Cartan subalgebras H0,...,Hm−1 of sl(n) are in bijective
correspondence with S×mn -orbits of n-dimensional modules of the algebra B 1

n
(Γm(n)).

Proof. Let us show that n-dimensional representation of B 1
n

(Γm(n)) has rank 1. Actually, we have m sets of n
orthogonal projectors of the same rank. Thus, these projectors has rank 1. It is easy that n-dimensional repre-
sentation of B 1

n
(Γm(n)) defines m sets of pairwise algebraically unbiased sets of minimal projectors. Straight-

forward check proves the theorem.
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2.4 Standard orthogonal pair in sl(n), Heisenberg relation and deformation.

In this subsection we give some examples of orthogonal pairs in sl(n) related to Heisenberg group and its
deformations.

It is well-known that Cartan subalgebra H of Lie algebra sl(n) has basis X, ...,Xn−1, where X satisfy to
relations: Xn = 1 and TrXi = 0, i = 1, ..., n − 1. Adding identity element, we get associative commutative
algebra Ĥ with basis 1, X, ...,Xn−1. Consider pair of Cartan subalgebras (H0, H1). As we know, there are
bases 1, X, ...,Xn−1;Xn = 1,TrXi = 0, i = 1, ..., n − 1 and 1, Y, ..., Y n−1;Y n = 1,TrY j = 0, j = 1, ..., n − 1
of associative subalgebras Ĥ0 and Ĥ1 respectively. We will say that pair of Cartan subalgebras (H0, H1) is
standard (cf.??) iff X,Y satisfy to Heisenberg relation:

XY = εY X, (13)

where ε is a primitive root of 1 of degree n. It is well-known that standard pair (H0, H1) is orthogonal. Actually,
if X,Y such that XY = εY X then Tr(XY ) = εTr(Y X) = εTr(XY ). Hence, Tr(XY ) = 0. Analogously, one
can prove that Tr(XiY j) = 0 for i, j = 1, ..., n− 1.

As we know, any two Cartan subalgebras are conjugate. Consider standard pair (H0, H1). Let H0 be a
subalgebra of diagonal matrices. Choose generator X as diagonal matrix of type: diag(1, ε, ..., εn−1). Thus,
Y = AXA−1 for some matrix A. It can be shown in usual way that matrix A (up to permutation of rows and
columns) has the following view:

A = (aij = ε(i−1)(j−1))i,j=1,...,n =


1 1 ... 1
1 ε ... εn−1

... ... ... ...
1 εn−1 ... ε

 (14)

It is well-known that matrix X and Y define the irreducible representation of Heisenberg group, which is a
central extension of Zn ⊕ Zn by Zn.

Assume that n = km. Consider deformation of Heisenberg relation of the following type:

XkY = εkY Xk, XY m = εmY mX. (15)

Proposition 5. Consider Cartan subalgebras H0 =< X, ...,Xn−1 >F , H1 =< Y, ..., Y n−1 >F , where Xn =
Y n = 1, TrXi = TrY i = 0, i = 1, ..., n − 1 and X,Y satisfy to relation (15). Then pair of Cartan subalgebras
(H0, H1) is orthogonal.

Proof. We have to prove that TrXiY j = 0 for i, j = 1, ..., n − 1. Consider the case: j = am, a =
1, ..., k − 1. Applying relation (15), we obtain the following identity: XiY am = εamXi−1Y amX. Tr(XiY am) =
εamTr(Xi−1Y amX) = εamTr(XiY am). Thus, Tr(XiY am) = 0 for any i = 1, ..., n − 1. Further, consider
the case j 6= am. XiY j = Xi−kXkY j = εkjXi−kY jXk. Because of j 6= am, we get that kj 6= 0(modn).
Hence, Tr(XiY j) = εkjTr(Xi−kY jXk) = εkjTr(XiY j). Therefore, we get that Tr(XiY j) = 0 for all
i, j = 1, ..., n− 1.

Orthogonal pair of Cartan subalgebras (H0, H1) of sl(n) is said to be (k,m)- weak standard if there are bases
Xi, i = 1, ..., n− 1 of H0 and Y j , j = 1, ..., n− 1 satisfying to relation (15).

For studying of (k,m) - weak standard orthogonal pairs, we will introduce the group Ĝ and its quotient G.

Denote by [k,m] and (k,m) the l.c.m. and g.c.d of k and m respectively. Consider group Ĝ with generators

x, y, t and defining relations: xn = yn = t[k,m] = 1, xky = t
k

(k,m) yxk, xym = t
m

(k,m) ymx, xt = tx, yt = ty. It is
evident that group Ĝ is a central extension:

0 // Z[k,m] // Ĝ // G1
// 1, (16)

where G1 is generated by x, y satisfying to relations: xn = yn = 1, xky = yxk, xym = ymx. It is easy that
element xk and ym are in the center of G1. Thus, G1 is a central extension:

0 // Zm ⊕ Zk // G1
// Zm ∗ Zk // 1, (17)
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where Zm ∗Zk is a free product of cyclic groups. Denote by a, b the generators of Zm and Zk respectively. Also,
we have the following exact sequence:

0 // Z[k,m] ⊕ Zm ⊕ Zk // Ĝ // Zm ∗ Zk // 1. (18)

Consider natural morphism: Zm ∗Zk → Zm⊕Zk. As we know (see [?]), kernel of this morphism is a free group
F of rank (m−1)(k−1) with generators aibja−ib−j , i = 1, ...,m−1, j = 1, ..., k−1. Thus, we have the following
commutative diagram:

0 // Z[k,m] ⊕ Zm ⊕ Zk //

=

��

H1
//

��

F //

��

1

0 // Z[k,m] ⊕ Zm ⊕ Zk //

��

Ĝ //

��

Zm ∗ Zk //

��

1

0 // 0 // Zm ⊕ Zk
= // Zm ⊕ Zk // 0

(19)

H1 is a subgroup of G generated by xk, ym, t, xiyjx−iy−j , i = 1, ...,m − 1, j = 1, ..., k − 1. Since F is a free
group, upper sequence is split. And hence, H1 is a semidirect product. Since xk, ym are central, we obtain that
xiyjx−iy−j · xk = xk · xiyjx−iy−j and xiyjx−iy−j · ym = ym · xiyjx−iy−j , i.e. action of F on Z[k,m] ⊕Zm ⊕Zk
is trivial. Thus, H1 is a direct product F × Z[k,m] ⊕ Zm ⊕ Zk.

Further, consider n-dimensional representation ρ of Ĝ corresponding to orthogonal pair. In this case, we
have ρ(t) = ε(k,m) · 1,Trρ(xi) = 0, i = 1, ...,m − 1, Trρ(yj) = 0, j = 0, ...,m − 1 and Trρ(xiyj) = 0 for
i, j = 1, ...,m − 1. Let us restrict ρ to subgroup Zm ⊕ Zk generated by xk and ym. Using vanishing of the
traces, we get that this restriction is a regular representation of Zm⊕Zk and ρ(F (Zm⊕Zk)) is a n-dimensional
commutative diagonalizable subalgebra, i.e. there is a basis in which matrices from ρ(F (Zm⊕Zk)) are diagonal.
As we know elements xiyjx−iy−j , i = 1, ...,m− 1, j = 1, ..., k − 1 commute with xk and ym, then one can show
that ρ(xiyjx−iy−j) are commuting matrices. Let us consider the quotient of Ĝ by commutativity relation of
xiyjx−iy−j , i = 1, ...,m− 1, j = 1, ..., k − 1. Denote this quotient by G. We have the following exact sequence
for G:

0 // H = Z⊕(k−1)(m−1) ⊕ Z[k,m] ⊕ Zm ⊕ Zk // G // G2 = Zm ⊕ Zk // 0 (20)

One can construct representations of group G as follows: fix one-dimensional representation (or character) χ of
H with condition χ : t 7→ ε(k,m). By proposition 5, we get that F [G] - module F [G]⊗F [H]χ defines weak standard

orthogonal pair. Variety of characters of H is Hom(H,F ∗) = (F ∗)(k−1)(m−1) ⊕ Hom(Zk, F ∗) ⊕ Hom(Zm, F ∗).
There is an action of G2 = Zm ⊕ Zk on H (and hence on Hom(H,F ∗)). It is clear that orthogonal pairs are
equivalent iff corresponding characters of H are in the same orbit of G2 - orbit. It can be shown in usual way
that

Proposition 6. (k,m) - Weak standard orthogonal pairs in sl(n) are parameterized by algebraic torus T (k,m) =
(F ∗)(k−1)(m−1).

Further, consider (m,k) - weak standard orthogonal pairs. The same arguments show us that (m,k) - weak
standard orthogonal pairs are parameterized by torus T (m, k) = (F ∗)(k−1)(m−1).

Proposition 7. If (k,m) = 1, then intersection of two tori T (k,m) ∩ T (m, k) in X(n, n) is a standard pair.

Proof. Consider the relations: XkY = εkY Xk, XmY = εmY Xm. Because of (k,m) = 1, there are a, b ∈ Z such
that ak + bm = 1. Thus, XY = Xak+bmY = εak+bmY Xak+bm = εY X.

Let us consider the case n = 6 = 2 · 3. In this case relation (15) has the following view:

X2Y = ε2Y X2, XY 3 = −Y 3X, (21)
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where ε is a primitive root of unity of degree 6. As we know, X and Y are parameterized by two-dimensional
algebraic torus T (2, 3). Find generalized hadamard matrices parameterized by this torus. One can show in
usual way that these matrices A(a, b), a, b ∈ F ∗ (up to permutation of columns and rows) have the following
type:

A(a, b) =


1 1 1 1 1 1
1 aε bε2 −1 aε4 bε5

1 ε2 ε4 1 ε2 ε4

1 −a b −1 a −b
1 ε4 ε2 1 ε4 ε2

1 aε5 bε4 −1 aε2 bε

 , (22)

where a, b ∈ F ∗. It is easy that generalized Hadamard matrices corresponding to T (3, 2) are At(a, b) (up to
permutation of columns and rows).

Remark. This example will play important role in the proof of main result of this paper.

3 n-dimensional representations of Br(Γk,n) and fibred products.

Let us introduce the notions of variety of representations and moduli variety of algebra A. Variety of repre-
sentations of A is affine variety Homalg(A,Mn(F )). We will denote this variety by Repn(A). It is easy that
there is a well-defined action of group GLn(F ) on Repn(A). It is well-known that there is algebraic quotient
Repn(A)/GLn(F ). This quotient is called moduli variety of A. We will denote moduli variety by Mn(A).

In this section we consider n-dimensional representations of reduced Temperley-Lieb algebra Br(Γk,n) for
complete bipartite graph Γk,n. Firstly, we will introduce an algebra Pr(Γ). This algebra is a natural general-
ization of Br(Γ). Further, we will prove that these representations are representations of the natural quotient

Bk,n. For this purpose, we will introduce algebra Ãk(ri). We will prove that Bk,n is a free product of Br(Γk,m)

and Br(Γk,n−m) over Ãk(ri). Using these arguments, we deduce that variety RepnBk,n is a fibred product of

RepnBr(Γk,m) and RepnBr(Γk,n−m) over RepnÃk(ri)[~1,m].
After that we will study some basic relation between MnBk,n and fibred product of MnBr(Γk,m) and

MnBr(Γk,n−m) over MnÃk(ri)[~1,m].

3.1 Algebras Pr(Γ), Br(Γ) and its relations to path algebras.

In this subsection we will introduce the algebra Pr(Γ) and will study its connection with Br(Γ). Algebra Pr(Γ)
is algebra over K[rij ] with unit and generators xv labeled by vertices of Γ with relations:

• x2
v = xv for every v ∈ V (Γ)

• xvxw = xwxv = 0 for non-adjacent vertices v, w.

It is clear that algebra Br(Γ) is a quotient of Pr(Γ) for fixed rij ∈ F ∗. Moreover, the algebras Pr(Γ) and Br(Γ)
are algebras with augmentation. Denote by Pr+(Γ) and B+

r (Γ) the respective ideals of augmentation.
Let us construct the double quiver QΓ. The set of vertices of QΓ is the set V (Γ). For any adjacent vertices

i, j in the graph Γ, we will connect these vertices by opposite arrows aij and aji. For any path γ ∈ QΓ, we will
consider the element xγ ∈ Pr(Γ) of form: xi1 ...xik , where i1, ..., ik are consecutive vertices of path γ.

Let us formulate (cf. [1]) proposition:

Proposition 8. Algebra Pr(Γ) has F -basis of form 1, xγ where γ runs over all pathes in QΓ. Similarly, algebra
Br(Γ) has F -basis of form 1, xγ where γ runs over homotopic classes of pathes in the graph Γ.

Recall the construction of homotop Âx of the algebra A by means of the element x ∈ A. Let x be the fixed
element of algebra A. We will consider non-unital algebra Ax with multiplication ∗x defined by formula:

a1 ∗x a2 = a1xa2.
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Formally adding the unit, we get the algebra Âx. We studied the properties of homotops in the article [1].
Consider the path algebras FQΓ and FΓ of quiver QΓ and graph Γ respectively. It is clear that algebra FΓ

is a quotient of FQΓ by ideal generated by elements aijaji − ei for any arrows aij , aji and vertices i.
For sij ∈ F ∗ such that s2

ij = rij , consider the elements

∆(QΓ) = 1 +
∑

sijaij , ∆(Γ) = 1 +
∑

sij lij

sum is taken over all arrows aij of the quiver QΓ and all edges lij of the graph Γ. It is easy that algebras Br(Γ)
and Pr(Γ) are homotops of path algebras FΓ and FQΓ by means of the elements ∆(Γ) ∈ FΓ and ∆(QΓ) ∈ FQΓ

respectively. Evidently, we have the following commutative diagram:

Pr(Γ)
ψi //

��

FQΓ

��
Br(Γ)

ψi // FΓ

(23)

for i = 1, 2.
Also, note the following property of the algebras Br(Γ) and Pr(Γ) (cf. [1]):

Proposition 9. Homological dimension of categories Br(Γ)−mod and Pr(Γ)−mod is less or equal 2.

3.2 Connection between representation of Pr(Γ) and Br(Γ).

In this subsection we will consider representations of quiver QΓ and its relation to representation of Pr(Γ). As
we know, representation of quiver Q with set of vertices Q0 and set of arrows Q1 has the following description.
Denote by FQ0 the subalgebra of FQ generated by all elements ev, v ∈ Q0. Denote by RepnQ and RepnQ0

varieties of n-dimensional representation of FQ and FQ0 respectively. Algebra FQ0 is isomorphic to direct
sum: ⊕v∈Q0F . We have the surjective morphism of varieties:

f : RepnQ→ RepnQ0 (24)

Recall that variety RepnQ0 is the union of irreducible components. These components are parameterized by

vectors ~α = (α1, ..., α|Q0|), αi ∈ N0,
∑|Q0|
i=1 αi = n. These vectors are called dimension vectors. We will denote

by RepnQ0[~α] the component corresponding to dimension vector ~α. Denote by RepnQ[~α] the subvariety
f−1(RepnQ0[~α]) of RepnQ. Thus, we have the following decomposition:

RepnQ =
⋃
~α

RepnQ[~α]. (25)

Variety RepnQ[~α] has the following description. Fix the representation % ∈ RepnQ[~α]. Consider the space
V of the representation %. Space V is the direct sum ⊕v∈Q0

Vv of subspaces Vv, v ∈ Q0. Elements %(ev), v ∈ Q0

are orthogonal projectors: %(ev) : V → Vv. Linear operators %(aij) transform subspace Vj into Vi. Denote by
Gr(~α, V ) the product

∏
v∈Q0

Gr(αv, V ). Then variety RepnQ0[~α] is a dense open subvariety of Gr(~α, V ). The
fiber of f is the product

∏
aij∈Q1

Hom(Vj , Vi).

Consider representation ρ of the algebra Pr(Γ). Denote by RepnPr(Γ)[~α] the variety of n-dimensional

Pr(Γ)-representations satisfying to condition: rankρ(xv) = αv, v ∈ V (Γ). Let |~α| =
∑|V (Γ)|
i=1 αi. Using morphism

φi, i = 1, 2, we have the morphisms of varieties:

φ∗i : Rep|~α|QΓ[~α]→ Rep|~α|Pr(Γ)[~α], i = 1, 2 (26)

Similar statements for algebras FΓ and Br(Γ) are true.
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We will say that representation ρ of Br(Γ) is representation of rank α if rank(xv) = α for some vertex v.
Note that, it follows from relations of Br(Γ) that ranks of all xv coincide. Denote by RepnBr(Γ)[α] the variety
of n-dimensional Br(Γ)-representation of rank α.

Note some properties of morphisms: RepnΓ → RepnQΓ[~α] and RepnBr(Γ)[α] → RepnPr(Γ)[~α]. Using
relations of algebras FΓ and Br(Γ), we get that images of RepnΓ and RepnBr(Γ) are in the components of
the RepnQΓ[~α] and RepnPr(Γ)[~α] with condition: αi = αj = α for all i, j ∈ V (Γ) respectively.

Thus, square (23) implies the commutative diagram of varieties:

RepnPr(Γ)[~α] RepnQΓ[~α]oo

RepnBr(Γ)[α]

OO

RepnΓoo

OO
(27)

Further, define map from moduli varieties of algebras Pr(Γ) to affine space of dimension |E(Γ)|.

trΓ : RepnPr(Γ)[1, ...., 1]→ FE(Γ) (28)

by formula:
trΓ : ρ 7→ (Trρ(xixj)), (ij) ∈ E(Γ) (29)

where ij runs over all non-oriented edges of graph Γ. Fix rij ∈ F ∗ for any edge ij. Then RepnBr(Γ)[1] =
tr−1

Γ ({rij}ij∈E(Γ)). It is clear tr is GLn(F)-equivariant map. Thus, we have the reduction:

TrΓ :MnPr(Γ)[1, ..., 1] := RepnPr(Γ)[1, ..., 1]/GLn(F)→ FE(Γ) (30)

and also, MnBr(Γ)[1] := RepnBr(Γ)[1]//GLn(F) = Tr−1
Γ ({rij}ij∈E(Γ)).

Consider complete bipartite graph Γk,m with two rows of vertices. There are k vertices and m vertices in
upper and lower rows respectively. Denote by p1, ..., pk and q1, ..., qm the generators of Pr(Γk,m) corresponding
to vertices of upper and lower rows respectively. Consider subalgebras A<p1,...,pk> and A<q1,...,qm> generated by
projectors p1, ..., pk and q1, ..., qm respectively. It is clear that these subalgebras are F⊕k and F⊕m respectively.
One can show that Pr(Γk,n) is a free product of F⊕k and F⊕m. Let us recall some facts about varieties of
representations.

Lemma 10. (cf. [?]) Let A1, A2, B be a finite-generated algebras. Then we have the following commutative
diagram:

Repn(A1 ∗B A2) //

��

Repn(A1)

��
Repn(A2) // Repn(B)

(31)

Moreover, there is an isomorphism of representation spaces:

Repn(A1 ∗B A2) ∼= Repn(A1)×Repn(B) Repn(A2) (32)

Corollary 11. Consider dimension vector ~α = (α1 = rankp1, ..., αk = rankpk, αk+1 = rankq1, ..., αk+m =

rankqm). Denote by ~αk = (α1, ..., αk) and ~αm = (αk+1, ..., αk+m). Assume that n ≥
∑k
i=1 αi and n ≥∑m

i=1 αk+i. In this case, we have the following isomorphism of varieties:

RepnPr(Γk,m)[~α] = RepnF
⊕k[~αk]×RepnF

⊕m[~αm]. (33)

Denote by GL~αk(F ) and GL~αm(F ) the groups GLα1
(F ) × ... × GLαk(F ) × GLn−

∑k
i=1 αi

(F ) and

GLαk+1
(F )× ...×GLαk+m

(F )×GLn−
∑m
i=1 αk+i

(F ) respectively. Then

RepnF
⊕k[~αk] = GLn(F )/GL~αk(F ),RepnF

⊕m[~αm] = GLn(F )/GL~αm(F ). (34)

11



We get that RepnPr(Γk,m) is irreducible and we have the following isomorphism of varieties:

RepnPr(Γk,m)[~α] = GLn(F )/GL~αk(F )×GLn(F )/GL~αm(F ). (35)

In particular, we have the formula for dimension of RepnPr(Γk,m)[~α]:

dimFRepnPr(Γk,m)[~α] = 2n2 −
k+m∑
i=1

α2
i − (n−

k∑
i=1

αi)
2 − (n−

m∑
i=1

α2
k+i). (36)

3.3 Algebras Bk,n as free products.

Denote by p1, ..., pn and q1, ..., qk, k ≤ n the generators of the algebra Br(Γk,n) corresponding to vertices of

lower and upper rows respectively. Let Q be an element
∑k
i=1 qi.

We can formulate the following statement for algebra Br(Γk,n):

Proposition 12. Any Br(Γk,n)-representation of rank s has dimension more or equal sn. Assume that there
exist sn-dimensional Br(Γk,n) - representations of rank s. Let I be an ideal of Br(Γk,n) generated by element∑n
i=1 pi − 1. Denote by Bk,n the quotient Br(Γk,n)/I. Then

n∑
j=1

rij = 1 (37)

for any i = 1, ..., k, and we have the isomorphism of varieties:

RepsnBk,n[s] ∼= RepsnBr(Γk,n)[s]. (38)

Proof. Straightforward.

It is well-known that any n-dimensional Br(Γk,n)-representation ρ of rank 1 is an irreducible. Actually, it
is easy to check that elements ρ(pi), i = 1, ..., n, ρ(piq1pj), i 6= j form the basis of matrix algebra. It was proved
by Ivanov D.N. ([?]).

Of course, we have the analogous statement for algebra Br(Γn,n).

Corollary 13. Any Br(Γn,n)-representation of rank s has dimension more or equal sn. Assume that there
exist sn-dimensional Br(Γn,n)-representations of rank s. Let J be an ideal of Br(Γn,n) generated by elements∑n
i=1 pi − 1 and

∑n
i=1 qi − 1. Denote by Bn,n the quotient Br(Γk,n)/J . Then

n∑
j=1

rij =

n∑
i=1

rij = 1 (39)

for any i, j = 1, ..., n, and we have the isomorphism of varieties:

RepsnBn,n[s] ∼= RepsnBr(Γn,n)[s]. (40)

Consider the case of non-trivial n-dimensional representations of Bk,n and Bn,n. It can be shown in usual
way that these representations has rank 1.

Fix a partition of n vertices of lower row into two complement subsets with m vertices and n −m vertices
respectively. With respect to this partition, we get the partition of generators p1, ..., pn into two non-intersected
subsets pi1 , ..., pim and pim+1 , ..., pin .

We have a natural morphisms: φ : Br(Γk,m) → Br(Γk,n) → Bk,n = Br(Γk,n)/IP and φ′ : Br(Γk,n−m) →
Br(Γk,n)→ Bk,n defined by composition of embeddings of graphs and natural projection. Let rj , j = 1, ..., k be

the sum
∑m
k=1 rikj . Consider the subalgebra Ãk(ri) := A〈P ;q1,...,qk〉 of algebra Br(Γk,s) generated by elements

P =
∑m
j=1 pij and qi, i = 1, ..., k.
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Lemma 14. Algebra Ãk(ri) has a defining relations: P 2 = P, q2
i = qi, qiPqi = riqi, i = 1, ..., k.

Proof. As we know (cf. [1]) algebra Br(Γk,m) has a basis pi1qj1 . . . pisqjs with ik 6= ik+1 and jk 6= jk+1 and
elements that can be obtained from these products by removing the first and the last factor. Let us show that
the elements of the form

1; qi1Pqi2P . . . qis ; Pqi2P . . . qis ; qi1Pqi2P . . . P ; Pqi2P . . . qisP (41)

with ik 6= ik+1 for all k ≤ s− 1 in all these expressions form a basis of the algebra A = Ãk(ri).
Introduce the filtration on A by defining FiA to be the subspace spanned by all elements in the list (41) with

the number of factors qi’s and P in the products to be less than or equal to i. Also, we have a filtration FiB(Γk,s)
on B(Γk,s). The basis in FiB(Γk,s) is compatible with filtration, hence it gives a basis in FiB(Γk,s)/Fi−1B(Γk,s)
(consisting of products of projectors of length i). Clearly, FiA ⊂ FiB(Γk,m), hence we have a map:

ϕ : FiA/Fi−1A→ FiB(Γk,m)/Fi−1B(Γk,m)

The quotient FiA/Fi−1A is generated by expressions in (41) of length precisely i. One can easily see that
these elements are mapped into linearly independent elements in FiB(Γk,m)/Fi−1B(Γk,m), because the image
under ϕ of any two different such elements is a linear combinations of disjoint subsets of elements in the basis
for FiB(Γk,m)/Fi−1B(Γk,m). By induction on i (starting from F0A), we get that elements (41) are linearly
independent, hence they form a basis in A. Note that the same argument also proves the strict compatibility
with filtration:

FiA = A ∩ FiB(Γk,m).

Thus, we get the required statement.

Denote by i the monomorphism: im : Ãk(ri) → Br(Γk,m). Let r′i be 1 − ri. Consider subalgebra
A〈P ′,q1,...,qn〉(r

′
i) of Br(Γk,n−m) generated by P ′ =

∑n
i=m+1 pi and qi. Analogous to lemma 14, this subal-

gebra isomorphic to Ãk(r′i). Further, there exists isomorphism: τ : Ãk(ri) ∼= Ãk(r′i) defined by correspondence:

P 7→ 1− P ′, qi 7→ qi. Hence, we have the monomorphism: i′ : Ãk(ri)→ Br(Γk,n−m) defined by formula:

P 7→ 1− P ′ 7→ 1−
n∑

i=m+1

pi, qi 7→ qi.

One can check that the following diagram:

Ãk(ri)
i //

i′

��

Br(Γk,m)

φ

��
Br(Γk,n−m)

φ′ // Bk,n

(42)

is commutative.

Proposition 15. Consider the partition of set p1, ..., pn into two complement subsets pi1 , ..., pim and
pim+1

, ..., pin and algebras Br(Γk,m) and Br(Γk,n−m). Algebra Bk,n is a free product of Br(Γk,m) and Br(Γk,n−m)

over Ãk(ri).

Proof. We have a morphism: Br(Γk,s) ∗Ãk(ri)
Br(Γk,n−s)→ Bk,n. This morphism is surjective, because images

of Br(Γk,s) and Br(Γk,n−s) generate Bk,n. By definition of morphisms φ and φ′, we get that pi = φ(pi), i =
1, ..., s; pi+s = φ′(pi), i = s+ 1, ..., n; qj = φ(qj) = φ′(qj).

Obviously, p2
i = pi, q

2
j = qj , piqjpi = rijpi, qjpiqj = rijqj , qiqj = 0 for i 6= j, pipj = 0 for i, j ∈ {1, ..., s} and

for i, j ∈ {s+ 1, ..., n} are relations in free product Br(Γk,s) ∗Ãk(ri)
Br(Γk,n−s).

Let us prove that pipj = 0 for all i 6= j. Let i ∈ {1, ..., s} and j ∈ {s + 1, ..., n}. Evidently, pi = piP =
pi
∑s
m=1 pm = pi and pj = (1 − P )pj =

∑n
m=s+1 pmpj = pj . Hence, pipj = piP (1 − P )pj = 0. Analogously,

pjpi = 0. Hence, relations of algebra Bk,n are satisfied. Using surjectivity of morphism, we obtain the required
statement.

13



Denote by An(ri) the unital algebra with generators P ; q1, ..., qn and relations P 2 = P, q2
i = qi, qiPqi =

riqi,
∑n
i=1 qi = 1. Denote by Im and In−m the ideals generated by element

∑n
i=1 qi − 1 in algebras Br(Γn,m)

and Br(Γn,n−m) respectively. Analogous to Ãk, we have monomorphism: i : An(ri) → Br(Γn,m)/Im = Bn,m,
isomorphism τ : An(ri) ∼= An(r′i), r

′
i = 1 − ri and, hence, monomorphism i′ : An(ri) → Br(Γn,n−m)/In−m =

Bn,n−m. Clearly, we have the following commutative diagram:

An(ri)
i //

i′

��

Bn,m

φ

��
Bn,n−m

φ′ // Bn,n

(43)

We get the following statement for algebra Bn,n:

Corollary 16. Consider the algebra Bn,n. Fix a partition of the set p1, ..., pn into two complement sub-
sets pi1 , ..., pim and pim+1

, ..., pin . Then algebra Bn,n is a free product of algebras Bn,m = Br(Γn,m)/Im and
Bn,n−m = Br(Γn,n−m)/In−m over algebra An(ri).

Proof. Analogous to proof of proposition 15.

3.4 Fibred products.

It is clear that morphisms i and i′ define morphisms i∗ : RepnBr(Γn,m) → RepnAn(ri), i′∗ :
RepnBr(Γn,n−m) → RepnAn(ri). It is easy that n-dimensional representation of Br(Γn,m) is a represen-

tation of rank 1. Also, note that representations of algebra An(ri) and Ãk(ri) are parameterized by dimension
vectors consisting of ranks of generators. It is easy that morphism i∗ transforms Br(Γn,m)-representation of rank
1 to n-dimensional representation of An(ri) with dimension vector (1, ..., 1,m), i.e. rankqi = 1, rankP = m.

Analogous, we have the similar arguments for algebra Ãk(ri). Denote by RepnAn(ri)[~1,m] the variety of
representations of algebra An(ri) with dimension vector (1, ..., 1,m).

Using lemma 10 and proposition 12, we get the following:

Corollary 17. We have the isomorphisms of varieties:

•
RepnBk,n[1] = RepnBk,n

∼= RepnBr(Γk,m)[1]×RepnÃk(ri)[~1,m] RepnBr(Γk,n−m)[1], (44)

•
RepnBn,n[1] = RepnBk,n

∼= RepnBn,m ×RepnAn(ri)[~1,m] RepnBn,n−m. (45)

Remark. Of course, there is a trivial generalization of this fact for case of sn-dimensional representations
of rank s.

Further, let us study the quotient of fibred product. Let Y1, Y2, Z be an affine G-varieties for some reductive
algebraic group G. Assume that we have G-morphisms: fi : Yi → Z, i = 1, 2. Thus, Y1 ×Z Y2 is an affine
G-variety too. Therefore, we can consider algebraic quotients Yi/G, i = 1, 2 and Z/G, i.e. SpecF [Yi]

G, i = 1, 2,
SpecF [Z]G. Also, we have an algebraic quotient Y1 ×Z Y2/G = Spec(F [Y1] ⊗F [Z] F [Y2])G. One can construct
the following morphism: p : (Y1 ×Z Y2)/G → Y1/G ×Z/G Y2/G. In this subsection we will study this natural
morphism.

Denote by Gx the stabilizer of point x. Fix points y1 ∈ Y1, y2 ∈ Y2. It is easy that Gy1
⊆ Gf1(y1) and

Gy2
⊆ Gf2(y2). Denote by Gx the orbit of point x. Note that morphism: p : (Y1 ×Z Y2)/G→ Y1/G×Z/G Y2/G

defined by rule: p : G(y1, y2) 7→ (Gy1, Gy2). Denote by π, πi, i = 1, 2 the natural morphisms: π : Y1 ×Z Y2 →
(Y1×Z Y2)/G, πi : Yi → Yi/G, i = 1, 2 and Also, consider subvarieties Y

(0)
i = {yi|π−1

i (πi(yi))− closed orbit}.
One can show that Y

(0)
i /G is a geometric quotient. It is clear that πi(Y

(0)
i ) are open subvarieties of Yi/G.
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Lemma 18. Consider point (Gy1, Gy2) ∈ Y
(0)
1 /G ×Z/G Y

(0)
2 /G such that yi ∈ Y

(0)
i , z ∈ Z, where f1(y1) =

f2(y2) = z. Assume that p−1(Gy1, Gy2) consists of closed orbits. Then fiber p−1(Gy1, Gy2) is isomorphic to
variety of double classes: Gy1\Gz/Gy2 .

Proof. One can show that p−1(Gy1, Gy2) = Gz\(Gz/Gy1
×Gz/Gy2

). The rest is trivial.

Corollary 19. Consider a component C of Y1 ×Z Y2 which contains a point (y1, y2), f1(y1) = f2(y2) = z
satisfying to condition: |Gy1

\Gz/Gy2
| = 1. Then restriction of p to C is a birational morphism.

Consider subvariety {y ∈ Y1/G ×Z/G Y2/G|p−1(y) = ∅} of Y1/G ×Z/G Y2/G. It can be shown that
this subvariety can be non-empty. Actually, consider point (y1, y2) ∈ Y1 ×Z Y2 such that f1(y1) 6= f2(y2)

and f1(y1)G ∩ f2(y2)G 6= ∅. In this case, we get the point (π1(y1), π2(y2)) ∈ Y1/G ×Z/G Y2/G such that
p−1(π1(y1), π2(y2)) = ∅.

Let us apply these arguments to the case of RepnBn,n. As we know, in this case any n-dimensional
non-trivial representations of algebras Bn,n, Bn,m and Bn,n−m of rank 1 are irreducible. Therefore, quotients
RepnBn,n, RepnBn,m and RepnBn,n−m by GLn(F ) are geometric, i.e. all GLn(F ) - orbits are closed. Hence,

Rep(0)
n Bn,n = RepnBn,n, Rep(0)

n Bn,m = RepnBn,m and Rep(0)
n Bn,n−m = RepnBn,n−m.

Consider the variety RepnBn,n. We have the following morphism: fn : MnBn,n →
MnBn,m ×MnAn(ri)[~1,m]MnBn,n−m. We get that

f−1
n (ρ1, ρ2) = Gψ/F

∗,

for ρ1 ∈ RepnBn,m, ρ2 ∈ RepnBn,n−m, ψ ∈ RepnAn(ri) such that i∗(ρ1) = i′∗(ρ2) = ψ.

We have to study representation theory of the algebras An(ri) and Ãk(ri) for further studying
of morphisms fn : MnBn,n → MnBr(Γn,m) ×MnAn(ri)[~1,m] MnBr(Γn,n−m) and f ′n : MnBk,n →
MnBr(Γk,m)[1]×MnÃk(ri)[~1,m]MnBr(Γk,n−m)[1].

4 Deformed preprojective algebra and algebra An(ri).
In this section we will study algebra An and its connection with deformed preprojective algebra of some quiver.
Namely, we will prove that these algebras are Morita equivalent. Using representation theory of deformed
preprojective algebra, we obtain that representation and moduli variety RepnAn[(~1,m)] and MnAn[(~1,m)]
are irreducible for any ri ∈ F, i = 1, ..., n,

∑n
i=1 ri = m. Also, we will calculate dimensions of MnAn(ri)[~1,m].

In first subsection we recall notions and facts about deformed preprojective algebra. In second subsection we
will prove Morita equivalence of An(ri) and deformed preprojective algebra Π~λ(Q) for some quiver Q and
~λ = (−r1, ...,−rn, 1).

4.1 Roots and deformed preprojective algebra.

In this subsection we will recall the main properties and notions of quiver and introduce deformed preprojective
algebra. In this subsection, we will consider free-loop quivers. Although, one can generalize all notions and
facts in the case of quiver with loops.

Let Q be a quiver with k vertices. Thus, Q0 = {1, ..., k}. Assume Q has no loops. The description of quiver
Q encoded by k × k-matrix χQ:

(χQ)ij = δij −#{arrows from i to j} (46)

Let ZQ0 be a free abelian group generated by vertices. For each vector ~α = (α1, ..., αk) ∈ ZQ0 let supp(~α) =
{i ∈ Q0| αi 6= 0}. We say that supp(~α) is connected if the full subquiver of Q with vertex set supp(~α) is
connected.

Recall that we have Euler form χQ : ZQ0 × ZQ0 → Z defined by formula:

χQ(~α, ~β) = ~α · χQ · ~βt, ~α, ~β ∈ ZQ0. (47)
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Its symmetrization is called by Tits form TQ, i.e. TQ(~α, ~β) = χQ(~α, ~β) +χQ(~β, ~α). Denote by qQ the quadratic
form: qQ(α) = 1

2TQ(~α, ~α) = χQ(~α, ~α). Denote by ~εi the coordinate vector corresponding to vertex i ∈ Q0.
Denote by Π the set of vectors εi, i ∈ Q0. The matrix Aij = TQ(~εi, ~εj) is a Generalized Cartan Matrix (at least
when Q has no loops), and so there is an associated Kac-Moody Lie algebra. This algebra has a root system
associated to it. For vertex i ∈ Q0, there is a reflection:

refli : ZQ0 → ZQ0, refli(~α) = ~α− TQ(~α, ~εi)~εi. (48)

It is clear TQ(~α, ~β) = TQ(refli(~α), refli(~β)) for any i ∈ Q0. The Weyl group is the subgroup W ⊂ Aut(ZQ0)
generated by the refli, i ∈ Q0. The set Φre(Q) =

⋃
w∈W (Q) w(Π) is called real roots. It is easy qQ(~α) = 1.

The fundamental region is

FQ = {~α ∈ NQ0| TQ(~α, ~εi) ≤ 0 for all ~εi ∈ Π and ~α has a connected support} (49)

The set Φim(Q) =
⋃
w∈W (Q) w(FQ) ∪ w(−FQ) is called imaginary roots. Clearly, qQ(~α) ≤ 0 for any imaginary

root ~α. Finally, the root system of Q is defined as Φ(Q) = Φre(Q) ∪ Φim(Q). An element ~α ∈ Φ(Q) ∩ NQ0 is
called positive root. A non-zero element ~α ∈ ZQ0 is called indivisible if gcd(αi) = 1. Clearly any real root is
indivisible, and if ~α is a real root, only ±~α are roots. On the other hand every imaginary root is a multiple
of an indivisible root, and all other nonzero multiples are also roots. Recall the connection between roots and
indecomposable representations of quiver.

Theorem 20. (Kac)

• If there is an indecomposable representation of Q with dimension vector ~α, then ~α is a root.

• If ~α is a positive real root there is a unique indecomposable representation with dimension vector ~α (up to
isomorphism).

• If ~α is a positive imaginary root then there are infinitely many indecomposables with dimension vector ~α
(up to isomorphism).

Further, we will define deformed preprojective algebra. For free-loop quiver Q, let us construct a double
quiver Qd, that is to an each arrow a ∈ Q1 we add an opposite arrow a∗ ∈ Qd1. Define commutator c as element∑
a∈Q1

[a, a∗] ∈ FQd. For the weight ~λ = (λ1, ..., λk) ∈ F k we define deformed preprojective algebra:

Π~λ(Q) = FQd/(c−
k∑
i=1

λiei) (50)

Multiply all arrows by non-zero t ∈ F ∗, we get the isomorphism of preprojective algebras:

Π~λ(Q) ∼= Πt~λ(Q). (51)

We know already that vector ~α = (α1, ..., αk) is a dimension vector of Π~λ-representation iff ~λ·~α =
∑k
i=1 λiαi = 0.

Fix % ∈ RepQd[~α]. As we know, the space of % decompose into direct sum of Vi = Im%(ei), i = 1, ..., k of
dimension αi, i = 1, ..., k respectively. Consider the algebra End[~α] = ⊕End(Vi). We can define momentum
map:

µ~α : RepQd[~α]→ End[~α] (52)

by following formula:

µ~α(%) =
∑
a∈Q1

%(a)%(a∗)− %(a∗)%(a) ∈ End[~α]. (53)

Thus, RepΠ~λ[~α] = µ−1
~α (
∑k
i=1 λi%(ei)).

Recall the definition of λ-Schur roots. Let us define pQ(~α) as 1− qQ(~α). We have the following inequality:

pQ(~α) ≥ 0 (54)

16



Definition The set S~λ of λ-Schur roots is defined to be a set of ~α ∈ Nk such that pQ(~α) ≥ pQ( ~β1)+...+pQ( ~βr)

for all decompositions ~α = ~β1 + ...+ ~βr with ~βi positive roots satisfying to ~λ · ~βi = 0.
We will use the following result from the representation theory of deformed preprojective algebras.

Theorem 21. (Crawley-Boewey) Let (~λ, ~α) are such that ~α ∈ S~λ. Then Rep|~α|Π~λ[~α] is a reduced and irre-

ducible complete intersection of dimension |~α|2 − 1 + 2pQ(~α). And general element of Rep|~α|Π~λ[~α] is a simple
representation. Thus, dimFM|~α|Π~λ[~α] = 2pQ(~α).

4.2 Morita-equivalence of algebra An(ri) and deformed preprojective algebra.

In this subsection we will prove that algebras An and preprojective algebra of some quiver are Morita equivalent.
Recall the following useful Morita’s theorem:

Theorem 22. (Morita) Consider algebra A and left A-ideal I. Let I be a direct summand of free left module
A. Assume, we have the identity:

AIA = A. (55)

Then algebras A and EndA(I) are Morita equivalent. In particular, consider the idempotent e ∈ A. If AeA = A,
then algebras eAe and A are Morita equivalent.

Consider quiver Q with n+ 1 vertices, which we denote by v1, ..., vn, w. Arrows of the Q are ai with source
w and target vi, i.e. |Q1| = n(see picture 1). Adding opposite arrows a∗i , we get the double quiver Qd(see
picture 2) and path algebra FQd.
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Let ~λ = (λv1
, ...., λvn , λw). Thus, we can construct deformed preprojective algebra Π~λ = Π~λ(Q). As we

know this algebra is a quotient of FQd by ideal J generated by element

x =

n∑
i=1

[a∗i , ai]−
n∑
i=1

λvievi − λwew. (56)

Thus, algebra Π~λ has the following relations:

aia
∗
i = −λvievi ,

n∑
i=1

a∗i ai = (

n∑
i=1

a∗i )(

n∑
i=1

ai) = λwew (57)

and relations of the quiver path algebra.
Denote by E the sum

∑n
i=1 evi . Note that Π~λEΠ~λ = Π~λ. It follows immediately from relations of Π~λ. Using

this fact and Morita’s theorem, we get the Morita equivalence of algebras EΠ~λE and Π~λ.
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Proposition 23. Assume λw 6= 0. Then there is an isomorphism of algebras:

EΠ~λE
∼= An(ri), (58)

where ri = −λviλw , i = 1, ..., n. Thus, algebra An(ri) is Morita-equivalent to deformed preprojective algebra Π~λ.

Proof. Using multiplication by non-zero element, we can suppose that λw = 1, λvi = −ri, i = 1, ..., n. Algebra
Π~λ is a quotient FQd/J , where J = FQdxFQd. Using Morita equivalence, we get that algebra EΠ~λE is a
quotient of EFQdE by ideal J ′ = EFQdxFQdE. Consider generators of EFQdE - ideal J ′. It is trivial that
x = ExE+ewxew, and ewxew = (

∑n
i=1 a

∗
i )(
∑n
i=1 ai)−ew. Ideal J is generated by ExE and ewxew, and hence,

J ′ is generated by ExE and subspace EFQdewxewFQdE. Further, it is easy EFQdew = EFQdE(
∑n
i=1 ai)

and ewEFQdE = (
∑n
i=1 a

∗
i )EFQdE. Thus, we get that

EFQdewxewFQdE = EFQdE(

n∑
i=1

ai)((

n∑
i=1

a∗i )(

n∑
i=1

ai)− ew)(

n∑
i=1

a∗i )FQdE. (59)

Therefore, algebra EΠ~λE is generated by elements ei, i = 1, ..., n and a∗i aj for all i, j = 1, ..., n with relations:

a∗i ai = riei, (

n∑
i=1

ai)(

n∑
i=1

a∗i )(

n∑
i=1

ai)(

n∑
i=1

a∗i ) = (

n∑
i=1

ai)(

n∑
i=1

a∗i )

Elements ei, i = 1, ..., n and (
∑n
i=1 ai)(

∑n
i=1 a

∗
i ) are generators of the algebra EΠ~λE.

Let us consider the map ψ : An(ri)→ EΠ~λE given by correspondence:

qi 7→ ei, P 7→ (

n∑
i=1

ai)(

n∑
j=1

a∗j ). (60)

Direct checking shows us that ψ is a homomorphism of algebras. Using previous arguments, we get that ψ is
isomorphism.

Fix dimension vector ~α = (αv1
, ..., αvn , αw) ∈ Nn+1

0 such that (~α,~λ) = 0. M|~α|Π~λ[~α] the variety of ~α-modules
of deformed preprojective algebra Π~λ. Let ~αv be a vector (αv1

, ..., αvn) Consider variety M|~αv|An(ri)[~α] of
αv1

+ ...+ αvn -dimensional An - modules with properties:

rankqi = αvi , i = 1, ..., n rankP = αw.

Using Morita equivalence, we get the isomorphism of varieties:

M|~α|Π~λ[~α] ∼=M|~αv|An(ri)[~α]. (61)

Remark. Also, let us consider the unital algebra C(ri) with generators si, i = 1, ..., n and relations

s2
i = risi,

n∑
i=1

si = 1. (62)

It can be shown in standard way that this algebra isomorphic to algebra ewΠ~λew and, thus, we get the Morita
equivalence of algebras: C(ri) and Π~λ.

For dimension vector ~α = (αv1 , ..., αvn , αw) denote byMαwC(ri)[~αv] the variety of αw ×αw matrices Si, i =
1, ..., n, such that rankSi = αvi and satisfying to relations (62).

Using this equivalence, we get the isomorphism of moduli varieties:

M~αΠ~λ
∼=MαwC(ri)[~αv] (63)
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4.3 Crawley-Boewey condition for dimension vector ~α = (1, ..., 1,m).

In this subsection we will study the properties of varietyMn,(1,...,1,m)(An) via Morita equivalence with deformed
preprojective algebra Π~λ of the quiver Q.

Proposition 24. Consider dimension vector ~α = (1, ..., 1,m) for m ∈ {2, ..., n−2}. Then vector ~α = (1, ..., 1,m)

is a ~λ - Schur root (i.e. ~α ∈ Σ~λ) for any vector ~λ = (−r1, ...,−rn, 1) such that r1 + ...+ rn = m.

Proof. Recall that we have to prove that pQ(~α) > pQ( ~β1) + ... + pQ( ~βs) for any non-trivial decomposition

~α = ~β1 + ... ~βs, where ~βi, i = 1, ..., s are positive roots and (~βi, ~λ) = 0. It is clear that last component of ~βi is
mi ∈ {0, ...,m}. Among other components there are ni 1’s and n− ni zeroes. We have the following relations:∑s
i=1mi = m,

∑s
i=1 ni = n. It is clear that matrix χQ has the following form:

χQ =


1 −1 −1 ... −1
0 1 0 ... 0
... ... ... ... ...
0 0 ... 0 1

 (64)

It can be shown in usual way that pQ(~α) = 1− χQ(~α, ~α) = (n−m− 1)(m− 1) and pQ(~βi) = 1− χQ(~βi, ~βi) =
(ni −mi − 1)(mi − 1). Thus, we have to prove the following inequality:

(n−m− 1)(m− 1) >

s∑
i=1

(ni −mi − 1)(mi − 1).

Transform it as follows:

(n−m)m−m− (n−m) + 1 >

s∑
i=1

(ni −mi)mi −
s∑
i=1

ni + s.

Finally, we get

(n−m)m >

s∑
i=1

(ni −mi)mi + s− 1. (65)

for ni,mi ∈ N0 such that
∑s
i=1 ni = n and

∑s
i=1mi = m. Further, let us give some remarks about ni and

mi. Fix root ~βi = (βi,1, ..., βi,n, βi,n+1 = mi). We have two cases: mi = 0 or mi > 0. In the first case, using

non-triviality of βi, we get ni > 0. In the second case, ~λ · ~βi = mi +
∑n
l=1 rlβi,l = 0. Hence, ni > 0. Thus,

ni > 0 for any root ~βi. Using inequality (54), we obtain:

(ni −mi − 1)(mi − 1) = (ni −mi)mi − ni + 1 ≥ 0

Thus, (ni −mi)mi ≥ 0. It means that ni ≥ mi for all i = 1, ..., s. Also, we have n−m ≥ 2 and m ≥ 2.
Let us prove the following lemma.

Lemma 25. Let X,Y be integers and X,Y ≥ 2. For any s ≥ 2 and any partitions X = x1 + ... + xs and
Y = y1 + ...+ ys satisfying to conditions:

• xi, yi ∈ N0,

• x2
i + y2

i > 0 for any i = 1, ..., s

we have the following inequality:

XY >

s∑
i=1

xiyi + s− 1. (66)
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Proof. of lemma. Fix partition θ = (X = x1 + ...+ xs, Y = y1 + ...+ ys). For simplicity, let us denote by f(θ)
the

∑s
i=1 xiyi + s − 1. Without loss of generality, let us assume that xi, yi > 0 for i = 1, ..., k1, xi > 0, yi = 0

for i = k1 + 1, ..., k2 and xi = 0, yi > 0 for i = k2 + 1, ..., s:

X = x1 + ...+ xk1 + xk1+1 + ...+ xk2 + 0 + ...+ 0.

Y = y1 + ...+ yk1 + 0 + ...+ 0 + yk2+1 + ...+ ys.

Denote by X0 and Y0 the sums
∑k1

i=1 xi and
∑k1

i=1 yi respectively. By X1 and Y1 we denote sums
∑k2

i=k1+1 xi
and

∑s
i=k2+1 yi. It is clear X = X0 + X1 ≥ 2, Y = Y0 + Y1 ≥ 2 and X1 ≥ k2 − k1, Y1 ≥ s − k2. Note that

k1 +X1 + Y1 − 1 ≥ s− 1. Let us prove that

XY >

k1∑
i=1

xiyi + k1 +X1 + Y1 − 1. (67)

Let us write XY in the following manner:

XY = (X0 +X1)(Y0 + Y1) = X0Y0 +X1Y0 +X0Y1 +X1Y1.

We will consider three cases: k1 > 1, k1 = 1, k1 = 0. Let us consider the first case. We have the following
inequality: X0Y0 ≥

∑k1

i=1 xiyi + k1(k1 − 1) (because of xiyj ≥ 1 for all i, j = 1, ..., k1), X1Y0 ≥ k1X1, X0Y1 ≥
k1Y1. Thus, we obtain:

XY ≥
k1∑
i=1

xiyi + k1(k1 − 1) + k1X1 + k1Y1 +X1Y1

Therefore, inequality (66) transforms to

k1(k1 − 1) + k1X1 + k1Y1 +X1Y1 > k1 − 1 +X1 + Y1

We can transform this inequality as follows:

(k1 +X1 − 1)(k1 + Y1 − 1) > 0

Therefore, first case is proved.
Second case. If k1 = 1, then we have the partitions: X = x1 + x2 + ... + xk2 + 0 + ... + 0 and Y =

y1 + 0 + ...+ 0 + yk2+1 + ...+ ys. Also, X1 =
∑k2

i=2 xi, Y1 =
∑s
i=k2+1 yi and x1 +X1 ≥ 2, y1 + Y1 ≥ 2.

It is easy XY = x1y1 + x1Y1 +X1y1 +X1Y1. We can rewrite inequality (67) as follows:

x1Y1 + y1X1 +X1Y1 > X1 + Y1.

This inequality is true, because x1 +X1 ≥ 2 and y1 + Y1 ≥ 2.
Last case k1 = 0. We have X = x1 + ...+ xk2 + 0 + ...+ 0, Y = 0 + ...+ 0 + yk2+1 + ...+ ys. Inequality (67)

transforms to:
XY > X + Y − 1.

It is true, because X,Y ≥ 2. Lemma is proved

To the end of proof of the proposition, let us apply lemma in the case yi = mi, xi = ni −mi, i = 1, ..., s.

Corollary 26. Fix m ∈ {2, ..., n − 2}. For any r1, ..., rn ∈ F such that r1 + ... + rn = m, general repre-
sentation of algebra An(ri) with dimension vector (1, ..., 1,m) is simple. Also, variety MnAn(ri)[(~1,m)] and
RepnAn(ri)[(~1,m)] are irreducible and have dimensions 2(n−m− 1)(m− 1) and 2(n−m− 1)(m− 1) +n2− 1
respectively.

Also, using Morita equivalence, we have the following:
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Corollary 27. General element of RepnAn(ri)[(~1,m)] is a simple representation.

Proof. Using theorem of Crawley-Boewey and proposition 24, we obtain that general Π~λ-representation of

dimension vector (1, ..., 1,m) is an irreducible for any ~λ = (−r1, ...,−rn, 1) such that r1 + ...+rn = m. Applying
Morita-equivalence, we get the required.

Let us calculate automorphism group of n-dimensional An(ri) - representation ρ. Let us introduce the
notion graph Gn(ρ) of the representation ρ. This graph has n vertices labeled by i, i = 1, ..., n corresponding to
generators qi, i = 1, ..., n. There is edge between vertices i and j iff ρ(qiPqj) 6= 0 or ρ(qjPqi) 6= 0. It is easy that
if we have two isomorphic representations ρ′ and ρ, then Gn(ρ) ∼= Gn(ρ′). It means that we have well-defined
notion of graph of An(ri)-module.

Proposition 28. Assume that ri 6= 0. Consider n-dimensional representation ρ of An(ri) of dimension vector
(1, ..., 1,m). Then group AutAn(ri)(ρ) is an algebraic torus and the following statements are equivalent:

• AutAn(ri)(ρ) = (F ∗)s, s ≤ m,

• graph Gn(ρ) has s connected components.

Proof. It is easy that vector space of ρ has a basis v1, ..., vn such that qivj = δijvi. Further, consider f ∈
AutAn(ri)(ρ). Then f(vi) = αivi, where αi 6= 0. Thus, AutAn(ri)(ρ) is a subgroup of algebraic torus (F ∗)n.
Assume that ρ(qiP )vj = xijvi for some xij ∈ F and any i, j. We get the following identity:

f(ρ(qiP )vj) = αjρ(qiP )vj = αjxijvi. (68)

From other hand, we obtain the following:

f(ρ(qiP )vj) = f(xijvi) = αixijvi. (69)

Hence, xij(αi − αj) = 0 for any i, j. Further, consider graph Gn of representation ρ. This graph has n vertices
labeled by qi, i = 1, ..., n. There is edge between qi and qj iff xij 6= 0. Note that Gn is connected iff αi = αj
for any i, j, i.e. AutAn(ri)(ρ) = F ∗. Therefore, we get that AutAn(ri)(ρ) = (F ∗)s iff graph Gn has s connected
components. Also, it can be shown in usual way that if AutAn(ri)(ρ) = (F ∗)s then rankP ≥ s.

Corollary 29. If ri 6= 0, 1, i = 1, ..., n then for any representation ρ graph Gn(ρ) has no components consisting
of one vertex.

Proof. Assume that one connected component has one vertex. Without loss of generality, number of this vertex
is 1. Then we have the following relations: q1Pqj = 0, j = 2, ..., n and qjPq1 = 0, j = 2, ..., n. Using relation∑n
j=1 qj = 1, we get that q1P (1− q1) = 0. Multiply by P from right side, we obtain: (1− q1)Pq1P . Calculating

trace, we get:

Tr(1− q1)Pq1P = TrPq1P − Trq1Pq1P = TrPq1 − r1TrPq1 = (1− r1)r1 6= 0 (70)

Contradiction.

5 Algebra Ãk(ri) and its moduli variety.

In this section we will study algebra Ãk(ri). Assume that ri 6= 0, i = 1, ..., k.
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5.1 Homological properties of algebra Ãk(ri).

Denote by ew, ei, i = 1, ..., k the trivial path in vertices. Denote by FQ the path algebra of quiver Q. Consider
two-sided ideal I generated by elements αi,wαw,i−riei. Denote by ∆Q the element ew+

∑k
i=1(ei+αi,w+αw,i).

One can prove that Ãk(ri) is a homotop of SQ with element ∆Q. One can show that ∆Q is well-tempered
element (cf.[1]) Consider the quotient SQ = FQ/I, where Q is a quiver with vertices labeled by w,v1,...,vk,
arrows αi,w and αw,vi . Arrows αi,w, αw,i, i = 1, ..., k connect vertices vi, w and w, vi respectively (see picture).
Note that deformed preprojective algebra is a quotient of SQ by relation:

∑n
i=1 αw,iαi,w − rwew.
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Further, consider algebra SQ. Let us apply Morita’s theorem to algebra SQ and idempotent ew. It is easy
that SQewSQ = SQ. Thus, algebras SQ and ewSQew are Morita equivalent. One can show that algebra ewSQew
is generated by si = αwiαiw, i = 1, ..., k. It is easy that

s2
i = risi. (71)

It can be shown in usual way that algebra ewSQew is an unital algebra generated by si satisfying to relations
(71). One can show that this algebra is isomorphic to Pr(Γ[k]), where Γ[k] is complete graph with k vertices.
Using subsection 3.1, we obtain that Pr(Γ[k]) is a homotop of path algebra of double quiver QΓ[k] with k
vertices. Using properties of homotopes, we get the following proposition:

Proposition 30. Hochschild dimension of Ãk(ri) is 2.

Proof. Applying theorem (cf [1]) and Morita invariance of Hochshild dimension, we get the required statement.

Of course, we have exact sequence of Ãk(ri) - bimodules:

0 // Ã+
k (ri) // Ãk(ri)

ε // F // 0 (72)

where ε is augmentation, i.e. ε(1) = 1, ε(P ) = ε(qi) = 0. Using basis of Ak(ri), we get that Ãk(ri) - bimodule

Ã+
k (ri) is a projective left Ãk(ri) - module, and we have the following isomorphism:

Ã+
k (ri) ∼= ⊕ki=1Ãk(ri)qi ⊕ Ãk(ri)P (73)

This augmentation has the following modification:

0 // Ã++
k (ri) // Ãk(ri)

εA// FP ⊕ F (1− P ) // 0 (74)
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Algebra FP ⊕ F (1− P ) is an unital algebra generated by P . ”Augmentation” εA is defined by formula:

εA(1) = 1, εA(P ) = P, εA(qi) = 0 (75)

It is easy that εA is a homomorphism of algebras.
Let us prove the following proposition:

Proposition 31. Ã++
k (ri) is a projective Ãk(ri) - module.

Proof. Let us restrict the εA to Ã+
k (ri). Denote this restriction by ε′A. Therefore, we have the following exact

sequence:

0 // Ã++
k (ri) // Ã+

k (ri)
ε′A // FP // 0. (76)

It is easy that Ãk(ri)qi ⊂ Ã++
k (ri). Thus, we have the induced map: Ãk(ri)P → F . It can be shown in usual

way that kernel of this map is a Ãk(ri) - module: ⊕ki=1Ãk(ri)qiP . Therefore, we get the following isomorphism

of left Ãk(ri) - modules:

Ã++
k (ri) ∼= ⊕ki=1Ãk(ri)qiP ⊕ Ãk(ri)qi. (77)

Also, we have the similar decomposition of Ã++
k (ri) as right module. It is easy that 1

ri
qiP is an idempotent,

hence Ãk(ri)qiP is a projective Ãk(ri) - module. The rest is trivial.

There are two 1-dimensional Ãk(ri)-modules FP and F (1 − P ). One can check that qi, i = 1, ..., k act
trivially on FP , P acts as identity operator. Also, P, qi, i = 1, ..., k act trivially on F (1 − P ). Proposition 31
show us that exact sequence (76) as projective resolutions of FP respectively. Of course, sequence (72) is a
projective resolution of F (1− P ).

Also, note that we can find connection between algebra Ãk(ri) and Pr(Γ[k]) more directly. Namely, if we

consider the following subspace Ãk(ri)P Ãk(ri), i.e two-sided ideal of Ãk(ri) generated by P . It can be shown

in usual way that Ãk(ri)P Ãk(ri) = Ã+
k (ri). Actually, using relation qiPqi = riqi, we can get all qi, i = 1, ..., k

and hence, we can get any element of Ã+
k (ri). Consider algebra P Ãk(ri)P . One can show that this algebra is

isomorphic to Pr(Γ[k]). This construction is similar to construction of Morita-equivalence of fundamental group

and Poincare grouppoid. Also, if we consider two-sided ideal of Ãk(ri) generated by
∑k
i=1 qi, then we get the

following identity: (
∑k
i=1 qi)Ãk(ri)(

∑k
i=1 qi) = Ã++

k (ri). Also, we obtain that algebra (
∑k
i=1 qi)Ãk(ri)(

∑k
i=1 qi)

is isomorphic to path algebra FQΓ[k] of double quiver QΓ[k] with k vertices.

5.2 Endomorphisms and automorphisms of Ãk(ri)-modules.

Consider n-dimensional Ãk(ri)-module V . Applying functor HomÃk(ri)
(−, V ) to sequence (74), we get the

following exact sequence:

0 // HomÃk(ri)
(FP ⊕ F (1− P ), V ) // V // HomÃk(ri)

(Ã++
k (ri), V ) (78)

// Ext1
Ãk(ri)

(FP ⊕ F (1− P ), V ) // 0. (79)

Also, applying functor −⊗Ãk(ri)
V to (74), we get the following exact sequence:

0 // Tor
Ãk(ri)
1 (FP ⊕ F (1− P ), V ) // Ã++

k (ri)⊗Ãk(ri)
V // V (80)

// (FP ⊕ F (1− P ))⊗Ãk(ri)
V // 0. (81)

Denote by KerP , Ker1−P , CokerP and Coker1−P the Ãk(ri) - modules: HomÃk(ri)
(FP, V ),

HomÃk(ri)
(F (1− P ), V ), FP ⊗Ãk(ri)

V and F (1− P )⊗Ãk(ri)
V respectively. It is easy that CokerP and KerP

23



are direct sum of several copies of FP ’s, Coker1−P and Ker1−P are direct sum of several copies of F (1− P )’s.

Denote by Im the image of Ã++
k (ri)⊗Ãk(ri)

V in V . Ãk(ri)-module Im has the following description: consider

subspace of V generated by Imqj , j = 1, ..., k and ImPqj , j = 1, ..., k. It is easy that this subspace is Ãk(ri) -
submodule and one can show that this submodule is Im. It is clear that we have the exact sequence:

0 // Im // V // CokerP ⊕ Coker1−P // 0 (82)

Lemma 32. Any Ãk(ri)-endomorphism g of V induces Ãk(ri)-endomorphisms g′ and g′′ of Im and
CokerP ⊕ Coker1−P respectively. Also, we have the following diagram:

0 // Im

g′

��

// V //

g

��

CokerP ⊕ Coker1−P //

g′′

��

0

0 // Im // V // CokerP ⊕ Coker1−P // 0

(83)

Also, g′′ transforms CokerP into CokerP and Coker1−P into Coker1−P .

Proof. It is sufficient to prove that restriction of g to Im is endomorphism of Im. As we know, Im is generated
by ImPqj and Imqj . It is clear that g(Pqjv) = Pqjg(v) and g(qjv) = qjg(v). Therefore, g preserves Im. Denote
this endomorphism of Im by g′. Thus, we have induced endomorphism g′′ of CokerP ⊕ Coker1−P . Also, it is
easy that g′′ preserves CokerP and Coker1−P .

Proposition 33. We have the following exact sequence:

0 // HomÃk(ri)
(CokerP , V )⊕HomÃk(ri)

(Coker1−P , V ) // EndÃk(ri)
V // EndÃk(ri)

Im. (84)

Moreover, HomÃk(ri)
(CokerP , V ) = HomF (CokerP ,KerP ) and HomÃk(ri)

(Coker1−P , V ) = HomF (Coker1−P ,Ker1−P ).

Proof. Applying functor HomÃk(ri)
(−, V ) to sequence (82), we get the following sequence:

0 // HomÃk(ri)
(CokerP , V )⊕HomÃk(ri)

(Coker1−P , V ) // EndÃk(ri)
V // HomÃk(ri)

(Im, V ). (85)

Let us prove that HomÃk(ri)
(Im, V ) = EndÃk(ri)

Im. Applying functor HomÃk(ri)
(Im,−) to sequence (82), we

get the sequence:

0 // EndÃk(ri)
Im // HomÃk(ri)

(Im, V ) // HomÃk(ri)
(Im,CokerP ⊕ Coker1−P ). (86)

Direct calculations show us that HomÃk(ri)
(Im,CokerP ⊕ Coker1−P ) = 0. Further, calculate

HomÃk(ri)
(CokerP , V ). Denote by cokerP the dimension of CokerP . As we know, CokerP ∼= FP cokerP . Using

projective resolution, we get the following exact sequence:

0 // HomÃk(ri)
(CokerP , V ) // HomÃk(ri)

(Ã+
k (ri), V )cokerP // HomÃk(ri)

(Ã++
k (ri), V )cokerP (87)

It can be shown in usual way that HomÃk(ri)
(CokerP , V ) = HomÃk(ri)

(CokerP ,KerP ) = HomF (CokerP ,KerP ).

One can prove analogous statement for HomÃk(ri)
(Coker1−P , V ).

Consider n-dimensional Bk,n-module V . Using diagram (42), we get Br(Γk,m) - module φ∗V , Br(Γk,n−m)

- module φ′∗V and Ãk(ri) - module i∗ ◦ φ∗V = i′∗ ◦ φ′∗V . Denote these modules by V . Consider Br(Γk,m) -
module V . As we know from [1], we have the following exact sequence:

0 // HomBr(Γk,m)(Coker′,Ker′) // EndBr(Γk,m)V // F // 0, (88)
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where Coker′ and Ker′ are Br(Γk,m) - modules HomBr(Γk,m)(F, V ) and F ⊗Br(Γk,m) V respectively. Note that
this exact sequence is split, i.e. EndBr(Γk,m)(V ) = F ⊕HomBr(Γk,m)(Coker′,Ker′). It can be shown in usual way
that i∗Coker′ = Coker1−P and i∗Ker′ = Ker1−P . One can consider the case of algebra Br(Γk,n−m). Namely,
we have the exact sequence:

0 // HomBr(Γk,n−m)(Coker′′,Ker′′) // EndBr(Γk,n−m)V // F // 0, (89)

where Coker′′ and Ker′′ are Br(Γk,n−m) - modules HomBr(Γk,n−m)(F, V ) and F ⊗Br(Γk,n−m) V respectively. It
can be shown in usual way that i′∗Coker′′ = CokerP and i′∗Ker′′ = KerP . Also, note that

HomÃk(ri)
(FP, F (1− P )) = HomÃk(ri)

(F (1− P ), FP ) = 0. (90)

It is easy that if s ∈ HomBr(Γk,m)(Coker′,Ker′), then we can define element of EndBr(Γk,m)(V ) as follows. We
have natural morphisms: V → Coker′ and Ker′ → V . Thus, we have the element of EndBr(Γk,m)(V ) defined as
composition:

V // Coker′
s // Ker′ // V. (91)

We will denote this endomorphism by ŝ.
Thus, we can define composition of s1, s2 ∈ HomBr(Γk,m)(Coker′,Ker′). Analogously, one can define compo-

sition in the case of algebras Br(Γk,n−m) and Ãk(ri). It is easy that natural morphisms:

EndBr(Γk,m)(V )→ EndÃk(ri)
(V ),EndBr(Γk,n−m)(V )→ EndÃk(ri)

(V ) (92)

are ring monomorphisms.

Proposition 34. Subrings EndBr(Γk,m)(V ) and EndBr(Γk,n−m)(V ) of EndÃk(ri)
(V ) commute.

Proof. Actually, consider α11 + s1 ∈ EndBr(Γk,m)(V ), α21 + s2 ∈ EndBr(Γk,n−m)(V ), where s1 ∈
HomBr(Γk,m)(Coker′,Ker′) = HomÃk(ri)

(Coker1−P ,Ker1−P ) and s2 ∈ HomBr(Γk,n−m)(Coker′′,Ker′′) =

HomÃk(ri)
(CokerP ,KerP ). As we know, endomorphism ŝ1 ◦ ŝ2 is defined as composition:

V // CokerP
s2 // KerP // V // Coker1−P

s1 // KerP // V (93)

As we know, KerP = ⊕FP and Coker1−P = ⊕F (1− P ). Thus, composition KerP → V → Coker1−P is zero by
(90). Hence, ŝ1 ◦ ŝ2 = 0. Similarly, ŝ2 ◦ ŝ1 = 0. Therefore,

(α11 + s1) ◦ (α21 + s2) = α1α21 + α1s2 + α2s1 = (α21 + s2) ◦ (α11 + s1), αi ∈ F, i = 1, 2. (94)

Note that we have the following identity:

(α11 + s1) ◦ (α21 + s2) = α1(α21 + s2) + α2(α11 + s1)− α1α21. (95)

Recall the following trivial facts. It is well known that for any algebra A and A-module V : AutA(V ) is a
group of units of EndA(V ). Also, note that for any algebra A and A - module V group AutA(V ) has central
subgroup F ∗.

Consider the following groups: AutÃk(ri)
(V ), AutBr(Γk,m)(V ), AutBr(Γk,n−m)(V ) and AutÃk(ri)

(Im). It is

easy that we can consider AutBr(Γk,n−m)(V ), AutBr(Γk,m)(V ) as subgroups of AutÃk(ri)
(V ). Also, we have

a natural group homomorphism: f : AutÃk(ri)
(V ) → AutÃk(ri)

(Im). Fix element g ∈ AutÃk(ri)
(V ) of the

following type:

g = α1 + s1 + s2, s1 ∈ HomF (CokerP ,KerP ), s2 ∈ HomF (Coker1−P ,Ker1−P ) (96)
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Using formula (95), we get the following factorization of g:

g = (α11 +
1

α2
s1) ◦ (α21 +

1

α1
s2) ∈ AutBr(Γk,m)(V ) ·AutBr(Γk,n−m)(V ), (97)

where α1α2 = α. Consider quotients AutÃk(ri)
(V )/F ∗, AutBr(Γk,m)(V )/F ∗, AutBr(Γk,n−m)(V )/F ∗ and

AutÃk(ri)
(Im)/F ∗. We have natural morphism: f : AutÃk(ri)

(V )/F ∗ → AutBr(Γk,m)(V )/F ∗. Formula (97)

means that Kerf = AutBr(Γk,m)(V )/F ∗ × AutBr(Γk,n−m)(V )/F ∗. Using these arguments, we get the following
proposition:

Proposition 35. Fix Bk,n - module V . Consider V as module over Br(Γk,m), Br(Γk,n−m) and Ãk(ri) - module
by commutative diagram (42). We have the following immersion of the varieties:

AutBr(Γk,m)(V )\AutÃk(ri)
(V )/AutBr(Γk,n−m)(V ) ⊆ AutÃk(ri)

(Im)/F ∗ (98)

We can introduce the notion of graph Gk(ρ) of Ãk(ri) - representation ρ. This notion is quite similar to
notion of graph of An(ri)-representation ρ. Graph Gk(ρ) has k vertices labeled by i, i = 1, ..., k. Two vertices
i and j are connected by edge iff ρ(qiPqj) 6= 0 or ρ(qjPqi) 6= 0. Also, we have well-defined notion of graph of

Ãk(ri)-module.
Let us formulate the following proposition:

Proposition 36. Assume that ri 6= 0. Consider Ãk(ri)-representation ρ of dimension vector (1, ..., 1,m).
Suppose that ρ satisfies to condition: space of representation is generated by Imρ(qi), Imρ(Pqi). Then group
AutÃk(ri)

(ρ) is a subgroup of algebraic torus (F ∗)k. Assume that (F ∗)s ⊆ AutÃk(ri)
(ρ) then graph Gk(ρ) has

at least s connected components.

Proof. Denote by Vρ the Ãk(ri) - module corresponding to ρ. Consider f ∈ AutÃk(ri)
(ρ). Denote by vi, i =

1, ..., k the eigenvectors of ρ(qi), i = 1, ..., k. It is easy that f(vi) = αivi for some αi ∈ F ∗, i = 1, ..., k. Consider
Pvi, i = 1, ..., k. Clearly, f(ρ(P )vi) = αiρ(P )vi. Since space Vρ is generated by Imρ(qi), Imρ(Pqi), we get the
definition of f on Vρ. Therefore, we have immersion of groups: AutÃk(ri)

(ρ) ⊂ (F ∗)k.

We have the following relation: ρ(qi)ρ(P )vj = xijvi for some xij ∈ F . Applying f , we get the following:

f(ρ(qi)ρ(P )vj) = ρ(qi)ρ(P )f(vj) = αjρ(qi)ρ(P )vj = αjxijvi. (99)

From other hand, f(ρ(qi)ρ(P )vj) = f(xijvi) = xijαivj . Therefore, xij(αi − αj) = 0. Note that if xij = 0, then
ρ(qiPvj) = ρ(qiPqjvj) = 0 and ρ(qiPqj) = 0. The rest is easy.

Also, let us note the following useful property:

Proposition 37. Consider Ãk(ri) - modules Im and V from exact sequence (82). Then graphs Gk(Im) and
Gk(V ) are isomorphic.

Proof. It is easy that Gk(Im) ⊆ Gk(V ). Thus, We have to show that Gk(V ) ⊆ Gk(Im). Recall that submodule
Im is generated by vectors qjv, v ∈ V and Pqjv, v ∈ V . It is easy that if qiPqjv 6= 0 for some vector v ∈ V ,
then qiPqjv = qiPqj(qjv) 6= 0 for some vector qjv ∈ Im. Thus, if vertices i and j are connected in Gk(V ), then
they are connected in Gk(Im) and, hence we have proved the required statement.

5.3 Properties of MnÃk(ri)[(~1,m)].

Consider algebras Pr(Γn,1), Pr(Γk,1). It is easy that An(ri), Ãk(ri) are quotients of Pr(Γn,1) and Pr(Γk,1) by
relations: qiPqi− riqi, i = 1, ..., n,

∑n
i=1 qi−1 and qiPqi− riqi, i = 1, ..., k respectively. It can be shown in usual

way that RepnAn(ri)[~1,m] and RepnÃk(ri)[~1,m] are fibers of morphisms:

trn,1 : RepnPr(Γn,1)[~1,m]→ Fn−1, trk,1 : RepnPr(Γk,1)[~1,m]→ F k (100)
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respectively. Morphisms trn,1 and trk,1 are defined by formulas: trn,1 : ρ 7→ (Trρ(Pq1), ..., T rρ(Pqn)) and
trk,1 : ρ 7→ (Trρ(Pq1), ..., T rρ(Pqk)). Also, Fn−1 is a affine space with coordinates r1, ..., rn and relation
r1 + ...rn = m. F k is a affine space with coordinates r1, ..., rk.

Fix m ∈ {2, ..., n− 2}. Consider following commutative diagram of varieties:

RepnPr(Γn,1)[(~1,m)]
trn,1 //

pr1

��

Fn−1

pr2

��
RepnPr(Γk,1)[(~1,m)]

trk,1 // F k

(101)

Morphisms pr1, pr2 are natural projections defined by formulas: pr1 : (q1, ..., qn, P ) 7→ (q1, ..., qk, P )
and pr2 : (r1, ..., rn) 7→ (r1, ..., rk). As we know from corollary 11, varieties RepnPr(Γn,1)[(~1,m)] and

RepnPr(Γk,1)[(~1,m)] are irreducible. Clearly, morphisms pr1 and pr2 are surjective.

Lemma 38. Morphism trk,1 are surjective.

Proof. As we know, fibers of morphism trn,1 are varieties RepnAn(ri)[(~1,m)]. Recall that algebra An(ri) and

Π~λ with vector ~λ = (−r1, ...,−rn, 1) are Morita-equivalent. It is well-known that there exists Π~λ-representation

of dimension vector (1, ..., 1,m) iff r1 + ...+ rn = m. Thus, RepnAn(ri)[(~1,m)] is non-empty for any r1, ..., rn
such that r1 + ...+ rn = m. Composition of morphisms trΓn,1 ◦ pr2 is surjective, and, hence, morphism trk,1 is
surjective.

Proposition 39. Consider general n-dimensional representation ρ with dimension vector (~1,m) of algebra
Pr(Γk,1). Then we have the following cases:

• if n > k +m,m > k, then dimFAutPr(Γk,1)(ρ) = (n−m− k)2 + (m− k)2 + 1,

• if n ≤ m+ k,m > k, then dimFAutPr(Γk,1)(ρ) = (m− k)2 + 1,

• if n > m+ k,m ≤ k, then dimFAutPr(Γk,1)(ρ) = (n−m− k)2 + 1,

• if n ≤ m+ k,m ≤ k, then dimFAutPr(Γk,1)(ρ) = 1.

Proof. Fix representation ρ ∈ RepnPr(Γk,1)[~1,m]. Denote by Vρ the Ãk(ri) - module corresponding to ρ.

Assume that ri = Trρ(Pqi) 6= 0, then we can consider ρ as representation of Ãk(ri). In this case, using sequence
(84), we get the following:

dimFAutÃk(ri)
(Vρ) ≤ dimFHomF (CokerP ,KerP ) + dimF (Coker1−P ,Ker1−P ) + dimFAutÃk(ri)

(Im), (102)

where Im is a Ãk(ri)-submodule of Vρ generated by Imρ(qj) and Imρ(Pqj). Consider subvariety U ⊂
RepnÃk(ri)[~1,m] of all representations ρ ∈ RepnÃk(ri)[~1,m] satisfying to conditions:

• dimFCokerP = dimFKerP = m− k if m ≥ k and zero if m < k,

• dimFCoker1−P = dimFKer1−P = n−m− k if n ≥ m+ k and zero if n < m+ k

• AutÃk(ri)
Im = F ∗.

If AutÃk(ri)
Im = F ∗, then inequality (102) transforms to identity. It can be shown in usual way that sub-

variety U is dense in RepnÃk(ri)[~1,m]. Further, since trk,1 is surjective, we get that tr−1
k,1(U) is dense in

RepnPr(Γk,1)[~1,m].

Corollary 40. Consider variety MnPr(Γk,1)[~1,m]. Then we have the following cases:
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• if n > k+m,m > k, then dimFMnPr(Γk,1)[~1,m] = 2k(n−1)+2m(n−m)−k(k−1)−n2+(n−m−k)2+(m−k)2+1 =
k2 − k + 1,

• if n ≤ m+k,m > k, then dimFMnPr(Γk,1)[~1,m] = 2k(n−1)+2m(n−m)−k(k−1)−n2 +(m−k)2 +1 =
2kn− k + 2mn−m2 − n2 − 2mk + 1,

• if n > m+k,m ≤ k, then dimFMnPr(Γk,1)[~1,m] = 2k(n−1)+2m(n−m)−k(k−1)−n2+(n−m−k)2+1 =
−k −m2 + 2mk + 1,

• if n ≤ m + k,m ≤ k, then dimFMnPr(Γk,1)[~1,m] = 2k(n − 1) + 2m(n − m) − k(k − 1) − n2 + 1 =
2kn− k + 2mn− 2m2 − k2 − n2 + 1.

Proposition 41. Variety RepnÃk(ri)[(~1,m)] is irreducible for any (r1, ..., rk) ∈ F k. And, hence, variety

MnÃk(ri)[(~1,m)] is irreducible too.

Proof. Fix point pt = (r1, ..., rk) ∈ F k. Recall that tr−1
Γk,1

(pt) = RepnÃk(ri)[(~1,m)]. Denote by U ′ the affine

space pr−1
2 (pt). Thus, we obtain the following commutative diagram:

tr−1
Γn,1

(U) //

pr1

��

U ′

pr2

��
RepnÃk(ri)[(~1,m)] // pt

(103)

Consider surjective morphism trΓn,1 : tr−1
Γn,1

(U ′) → U ′. Using corollary 26, we obtain that for any point

u = (r1, ..., rn) ∈ U ′, variety tr−1
Γn,1

(u) = RepnAn(ri)[(~1,m)] is irreducible and has dimension 2(n−m−1)(m−1).
Recall the following property of morphisms: if Y is irreducible, morphism f : X → Y is a dominant, all fibers are
irreducible and has the same dimension, then X is an irreducible variety. Using this property, we get tr−1

Γn,1
(U ′)

is irreducible for any irreducible U ′ ⊆ Fn−1. Because of morphism pr1 is surjective, we obtain that variety
RepnÃk(ri)[(~1,m)] is irreducible.

As we know from proposition 26, morphism trn,1 is equidimensional. One can prove that morphisms pr1

and pr2 are equidimensional. Using irreducibility of the varieties and surjectivity of the morphisms, we get that
morphism trk,1 is equidimensional.

Consider the following commutative diagram:

RepnPr(Γn,1)[(~1,m)]
πn,1 //

pr1

��

MnPr(Γn,1)[(~1,m)]
Trn,1 //

pM

��

Fn−1

pr2

��
RepnPr(Γk,1)[(~1,m)]

πk,1 //MnPr(Γk,1)[(~1,m)]
Trk,1 // F k,

(104)

where πn,1, πk,1 are natural surjective morphisms, morphisms Trn,1,Trk,1 are defined obviously. Clearly,
Trn,1 ◦ πn,1 = trn,1, Trk,1 ◦ πk,1 = trk,1.

Proposition 42. Morphism Trk,1 is equidimensional. For k < n and any ri ∈ F, i = 1, ..., k

dimFRepnÃk(ri)[(~1,m)] = k(2n− k − 2) + 2m(n−m). (105)

There are several possibilities for MnÃk(ri)[(~1,m)]:

• if n ≤ m+ k, m ≤ k, then dimFMnÃk(ri)[(~1,m)] = k(2n− k − 2) + 2m(n−m)− n2 + 1.

• if n > m+ k, m ≤ k, then dimFMnÃk(ri)[(~1,m)] = k(2n− k− 2) + 2m(n−m)−n2 + (n−m− k)2 + 1 =
(2k −m− 1)(m− 1),
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• if n ≤ m + k, m > k, then dimFMnÃk(ri)[(~1,m)] = k(2n − k − 2) + 2m(n −m) − n2 + (m − k)2 + 1 =
(2k +m− n− 1)(n−m− 1),

• if n > m+k, m > k, then dimFMnÃk(ri)[(~1,m)] = k(2n−k−2)+2m(n−m)−n2+(n−m−k)2+(m−k)2+1 =
(k − 1)2.

Proof. Since trn,1 and pr2 are surjective and equidimensional, we get that pr2 ◦ trn,1 = trk,1 ◦ pr1 is equidimen-
sional.

Let us formulate the following useful obvious statement: Assume that X,Y, Z are irreducible varieties.
Morphisms f : X → Z, g : X → Y and h : Y → Z are surjective morphisms with relation: f = h ◦ g. Suppose
that f is equidimensional. Then h and g are equidimensional.

Using this statement and surjectivity of pr1 and trk,1, we obtain that pr1 and trk,1 are equidimensional.
Also, we get that Trk,1 and πk,1 are equidimensional. Also, we get that morphism pM is surjective and
equidimensional.

As we know from corollary 11, dimFRepnPr(Γn,1)[(~1,m)] = n(n − 1) + 2m(n −m). Using dimension of

fiber, we get dimFRepnPr(Γk,1)[(~1,m)] = n(n−1) + 2m(n−m)− (n−k)(n−k−1). Using equidimensionality
of trk,1, we obtain that

dimFRepnÃk(ri)[(~1,m)] = k(2n− k − 2) + 2m(n−m).

Analogous arguments prove the rest.

Let us come back to algebra FQΓ[k] from subsection 5.1. Denote by i, i = 1, ..., k and βij the vertices and
arrows of the quiver QΓ[k]. For any i = 1, ..., k, let us denote by ei the projectors corresponding to vertex vi.
As we know, we have the following isomorphism of the algebras:

FQΓ[k]
∼= (

k∑
i=1

qi)Ãk(ri)(

k∑
i=1

qi). (106)

defined by rule:
ei 7→ qi, βij 7→ qiPqj (107)

Thus, we have the following isomorphism:

TrFQΓ[k] = FQΓ[k]/[FQΓ[k], FQΓ[k]] ∼= TrÃ++
k (ri) = Ã++

k (ri)/[Ã++
k (ri), Ã++

k (ri)] (108)

Actually, consider element qiP . We have the following identity: qiP − riqi = qiP − qiPqi = [qiP, qi]. Therefore,
any element of type Pqi1P...PqisP can be expressed as follows: qi1P...Pqi1 + commutators. It is easy that

TrÃk(ri) = FTr1 ⊕ FTrP ⊕ TrÃ++
k (ri). Denote by MQΓ[k][~1] the variety of FQΓ[k] - modules of dimension

vector ~1. We have the following result:

Proposition 43. • MnÃk(ri)[~1,m] ⊂MQk[~1].

• if m ≥ k, n ≥ m+ k, then MnÃk(ri)[~1,m] ∼=MQk[~1].

Proof. Prove the first statement. There is a functor: θ1 : Ãk(ri)−mod→ FQΓ[k] −mod defined by correspon-
dence:

θ1 : V 7→ HomÃk(ri)
(Ãk(ri)

k∑
i=1

qi, V ). (109)

Consider morphism MnÃk(ri)[~1,m] → MFQΓ[k][~1] defined by this correspondence. It is well-known from
geometric invariant theory that point of moduli variety corresponds to closed orbit. Using this statement, we
get that two Ãk(ri) - modules V1 and V2 such that [V1] = [V2] ∈MnÃk(ri) iff their characters are the same, i.e.

TrV1
(x) = TrV2

(x) for any x ∈ Ãk(ri). Let us prove that if V1 and V2 corresponds to fixed W ∈ MFQΓ[k][~1],
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then characters of V1 and V2 are the same. Using isomorphism (108), we get that TrV1(x) = TrV2(x) for any

x ∈ Ã++
k (ri) and Tr1 = n,TrP = m. Thus, we have proved the first statement.

Using isomorphism FQΓ[k]
∼=
∑k
i=1 qiÃk(ri)

∑k
i=1 qi, we get the functor: θ2 : FQΓ[k] −mod→ Ãk(ri)−mod

defined by rule:

θ2 : W 7→ Ãk(ri)

k∑
i=1

qi ⊗FQΓ[k]
W. (110)

Fix FQΓ[k]-module W . In this case θ2(W ) ∈ M2kÃk(ri)[~1, k]. We can consider the following Ãk(ri)-module:

FP⊕(m−k) ⊕ F (1 − P )⊕(n−m−k) ⊕ θ2(W ) ∈ MnÃk(ri)[~1,m]. Since θ1 and θ2 are adjoint, we get the required
statement.

As we know, we have analogous statement for algebra Br(Γ)(cf.BZ). Let ∆(Γ) be a Laplacian of graph Γ.
Let us formulate the following useful proposition for MnBr(Γ)[1]:

Proposition 44. We have the following immersion: MnBr(Γ)[1] ⊂ (F ∗)rkH1(Γ). Variety MnBr(Γ)[1] is given
by condition rank∆(Γ) ≤ n. In particular, if |V (Γ)| ≤ n, then MnBr(Γ)[1] ∼= (F ∗)rkH1(Γ).

Also, note the following useful property of varieties MnBr(Γ): if n1 ≤ n2, then there is an immersion:
Mn1

Br(Γ)[α]→Mn2
Br(Γ)[α] defined as follows. Fix Br(Γ)-module W of dimension n1. Consider direct sum:

W ⊕ Fn2−n1 , where F is a trivial Br(Γ)-module. One can show that this correspondence is an immersion.

Recall that we have morphisms i : Ãk(ri) → Br(Γk,m) and φ : Br(Γk,m) → FΓk,m. Thus, we have the
following useful morphism:

TrFQk ∼= TrÃ++
k (ri)→ TrB+

r (Γk,m) ∼= TrΓk,m, (111)

where TrΓk,m is a vector space of free loops in the graph Γk,m. Also, we have homomorphisms of symmetric
algebras:

S•TrFQk = S•TrÃ++
k (ri)→ S•TrBr(Γk,m) = S•TrΓk,m (112)

Let us describe this morphism in coordinates. Consider element i(Trqi1P...qilP ) ∈ S•TrBr(Γk,m). It is easy
that

i(Trqi1P...qilP ) = Trqi1i(P )...qili(P ) = Trqi1(p1 + ...+ pm)...qil(p1 + ...+ pm) (113)

Thus, we get that i(Trqi1 ...P qisP ) is a product of s elements:

Trqi1(p1 + ...+pm)...qil(p1 + ...+pm)qi1 = c(s)Trqi1(p1 + ...+pm)qi2p1qi1 ·qi1p1qi2(p1 + ...+pm)qi3p1qi1 ... (114)

qi1p1qis(p1 + ...+ pm)qi1 = c(r)Trqi1(p1 + ...+ pm)qi2p1 ·Trqi1p1qi2(p1 + ...+ pm)... ·Trqi1p1qil(p1 + ...+ pm)qi1 ,

where c(r) = rl−1
1,1 r1,2...r1,l. Analogous statement for i′(Trqi1 ...P qilP ) is true. One can describe formula (114)

in terms of path algebras.

5.4 Relation between MnAn(ri) and MnÃk(ri).

Also, note the following relation between varietiesMnAn(ri) andMnÃk(ri). Consider partition of set (1, ..., n)
into two complement subsets (1, ..., k) ∪ (k + 1, ..., n). Consider morphisms of algebras:

i1 : Ãk(ri)→ An(ri), i2 : Ãn−k(ri)→ An(ri), (115)

defined by natural way. For unification, denote by Ã the unital algebra generated by elements P,Q with relations:
P 2 = P,Q2 = Q. Clearly, Ã ∼= Pr(Γ1,1). We have the following morphisms: j1 : Ã → Ãk(ri), j2 : Ã → Ãn−k(ri)
defined by correspondences: j1 : (P,Q) 7→ (P, q1 + ...+ qk), j2 : (P,Q) 7→ (P, 1−

∑n
i=k+1 qi). It is easy that we

have the following commutative diagram:

Ãk(ri)
i1 // An(ri)

Ã
j2 //

j1

OO

Ãn−k(ri)

i2

OO
(116)
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It can be shown in usual way that
An(ri) ∼= Ãk(ri) ∗Ã Ãn−k(ri) (117)

Therefore, we obtain the following isomorphism of the varieties:

RepnAn(ri)[~1,m] ∼= RepnÃk(ri)[~1,m]×RepnÃ[k,m] RepnÃn−k(ri)[~1,m], (118)

where RepnÃ[k,m] is a variety of projectors P,Q of rank k,m respectively. Consider GLn(F ) - invariant divisor

Dr of RepnÃ[k,m] defined by relation TrPQ =
∑k
i=1 ri = r. It is clear that

RepnAn(ri)[~1,m] ∼= RepnÃk(ri)[~1,m]×Dr RepnÃn−k(ri)[~1,m] (119)

Of course, these results are true for another partition with obvious substitutions.
Further, let us consider quotients of these varieties by GLn(F ). We have morphism:

π :MnAn(ri)[~1,m]→MnÃk(ri)[~1,m]×DrMnÃn−k(ri)[~1,m], (120)

where Dr is a quotient Dr/GLn(F ).
Recall general fact about ring of GLn(F ) - invariant functions. Consider algebra A. Then O(Mn(A))GLn(F )

is generated by functions Tra, a ∈ A. Using isomorphism (108), we get that generators of O(Mn(Ãk(ri)))
GLn(F )

are necklaces in quiverQk, i.e. equivalence classes of cycles in quiverQk. We will say that necklace is a generating
if this necklace has no self-intersections. It can be shown in usual way that we can choose generating necklaces
as generators of O(MkQΓ[k][~1]). We can describe this fact in the following terms:

Corollary 45. Ring O(MnAn(ri)[(~1,m)] is generated by elements TrPqi1Pqi2 ...P qis , s ≤ n. Also,
O(MnAn(ri))[(~1,m)] is generated by elements TrPqi1Pqi2 ...P qis , s ≤ k.

Denote by t(i1,...,im) the function Tr(Pqi1Pqi2 ...P qim). Using isomorphism (108), we can consider ti1,...,im
as necklace in quiver Qk, i.e. cycle up to cyclic permutation of vertices. Using irreducibility of variety
MnÃk(ri)[(~1,m)], we get the following

Proposition 46. Assume k ≥ 3. Then field of rational functions F (MnÃk(ri)[(~1,m)]) has the following
generators: t(i1,i2), t(i1,i2,i3), i1, i2, i3 = 1, ..., k, i1 6= i2, i1 6= i3, i2 6= i3.

Proof. As we know, variety MnÃk(ri)[(~1,m)] is a subvariety of MnQk[~1]. It can be shown in usual
way that generators of F (MnQk[~1]) are necklaces of length less or equal 3. Actually, show that neck-
lace Trβ12β23β34β41 can be expressed in terms of necklace of length at more 3. Consider following ele-
ment: Trβ12β23β34β41 · Trβ13β31 ∈ S•TrQΓ[k]. Using equivalence relation, we get the following formula:
Trβ31β12β23 · Trβ34β41β13 = Trβ12β23β34β41 · Trβ13β31, and hence,

Trβ12β23β34β41 =
Trβ31β12β23 · Trβ34β41β13

Trβ13β31
(121)

The rest is easy.

Let Par(k, n) be the set of partition of set (1, ..., n) into two complement subset consisting of k and n − k
elements. For any partition θ = (i1, ..., ik)∪ (ik+1, ..., in), denote by Ãθk(ri) and Ãθn−k(ri) the algebras generated

by P ; qi1 , ..., qik and P ; qik+1
, ..., qin respectively. As we know, An(ri) ∼= Ãθk(ri) ∗Ã Ã

θ
n−k(ri), where morphisms

are defined obviously. Therefore, we have the following morphism:

πθ :MnAn(ri)[~1,m]→MnÃθk(ri)[~1,m]×DrMnÃθn−k(ri)[~1,m] (122)

It is easy that π defined by formula (120) is πθ for θ = (1, ..., k) ∪ (k + 1, ..., n).
Define morphism Π as follows:

Π =
∏

θ∈Par(k,n)

πθ :MnAn(ri)[~1,m]→
∏

θ∈Par(k,n)

MnÃθk(ri)[~1,m]×DrMnÃθn−k(ri)[~1,m]. (123)
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Proposition 47. Morphism Π is a birational isomorphism of MnAn(ri)[~1,m] on its image, i.e. morphism Π
from (123) is a birational immersion.

Proof. Consider open subvariety U of MnAn(ri)[~1,m] defined by relations t(i1,i2) 6= 0 for all possible i1, i2.

Since variety MnAn(ri)[~1,m] is irreducible, then U is dense in it. Using proposition 46, the ring O(U) is
generated by t±1

(i1,i2), t(i1,i2,i3). Denote by Uθ the image of U under πθ. Morphism πθ∗ : O(Uθ) → O(U) is an

injective. Moreover,
⊗

θO(Uθ) = O(
∏
θ Uθ) contains all t(i1), t

±1
(i1,i2), t(i1,i2,i3), and hence, natural morphism:

O(
∏
θ Uθ)→ O(U) is surjective. It means that morphism

Π : U →
∏
θ

Uθ (124)

is an immersion. Therefore, we get the required statement.

Remark. Note that we don’t require that varietyMnÃθk(ri)[~1,m]×DrMnÃθn−k(ri)[~1,m] is irreducible. Of

course, these results have obvious generalizations on the case of variety MnPr(Γk,1)[~1,m].
Also, note the following useful result. Without loss of generality, consider a partition {1, ..., n} =

{1, ...,m} ∪ {m + 1, ..., n}. In this case, we have the isomorphisms: Bk,n ∼= Br(Γk,m) ∗Ãk(ri)
Br(Γk,n−m) and

An(ri) ∼= Ãm(ri) ∗Ã Ãn−m(ri). We can define morphisms: Ãm(ri) → Br(Γk,m), Ãn−m(ri) → Br(Γk,n−m) and

Ã → Ãk(ri) by formulas: (P ; q1, ..., qm) 7→ (p1 + ...+pk; q1, ..., qm), (P ; qm+1, ..., qn) 7→ (p1 + ...+pk; qm+1, ..., qn)
and (P ;Q) 7→ (P ; q1 + ...+ qk). One can check that we have the following commutative diagram:

Ãm(ri)
// Br(Γk,m)

Ã

;;xxxxxxxxxx //

##GGGGGGGGGG Ãk(ri)

99rrrrrrrrrr

%%LLLLLLLLLL

Ãn−m(ri)
// Br(Γk,n−m)

(125)

Therefore, we have a well-defined morphism:

Ãm(ri) ∗Ã Ãn−m(ri)→ Br(Γk,m) ∗Ãk(ri)
Br(Γk,n−m). (126)

Also, we have the following commutative diagram:

An(ri) // Bk,n

Ãm(ri) ∗Ã Ãn−m(ri) //

∼=

OO

Br(Γk,m) ∗Ãk(ri)
Br(Γk,n−m)

∼=

OO (127)

Further, let us apply functor Rep to this commutative diagram. Therefore, we obtain the following commutative
diagram:

RepnBk,n //

∼=
��

RepnÃn(ri)[~1, k]

∼=
��

RepnBr(Γk,m)[1]×RepnÃk(ri)[~1,m] RepnBr(Γk,n−m)[1] // RepnÃm(ri)[~1, k]×RepnÃ[m,k] RepnÃn−m(ri)[~1, k]

(128)
Also, we can take quotient by GLn(F ) - action. Therefore, we get the following proposition:
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Proposition 48. We have the following commutative diagram:

MnBk,n[1] //

��

MnÃn(ri)[~1, k]

��
MnBr(Γk,m)×MnÃk(ri)[~1,m]MnBr(Γk,n−m) //MnÃm(ri)[~1, k]×MnÃ[m,k]MnÃn−m(ri)[~1, k]

(129)

Remark. This proposition will play important role in the proof of main result of this paper.

6 Moduli varieties MnBk,n and MnBn,n.

In this section we will study properties of morphismsMnBk,n →MnBr(Γk,m)[1]×MnÃk(ri)[~1,m]MnBr(Γk,n−m)

and MnBn,n →MnBn,m ×MnÃk(ri)[~1,m]MnBn,n−m.

6.1 Description of moduli variety MnBk,n.

In this subsection we will consider representations of Br(Γ) for some graph Γ. Fix r = (rij ∈ F ∗), (ij) ∈ E(Γ).
Consider variety MnBr(Γk,m)[1] for k + m > n. As we know from BZ, MnBr(Γk,m) is a subvariety of

(F ∗)(k−1)(m−1). Let us describe this subvariety in terms of the Laplacian of the graph Γk,m. Consider matrix
of Laplacian ∆ of graph Γk,m:

∆ =



1 0 ... 0 s11 s12 ... s1m

0 1 ... 0 s21 s22x22 ... s2mx2m

... ... ... ... ... ... ... ...
0 0 ... 1 sk1 sk2xk2 ... skmxkm
s11 s21 ... sk1 1 0 ... 0
s12

s22

x22
... sk2

xk2
0 1 ... 0

... ... ... ... ... ... ... ...
s1m

s2m
x2m

... skm
xkm

0 0 ... 1


(130)

Denote by Ek and Em the identity matrices of size k and m respectively.

Lemma 49. Consider matrix of the following type:

∆ =

(
Em A
B Ek

)
(131)

Then rank∆ ≤ n iff rank(BA− Ek) ≤ n−m.

Proof. (
Em −A
0 Ek

)
·
(
Em A
B Ek

)
=

(
Em 0
B −BA+ Ek

)
(132)

Corollary 50. Variety MnBr(Γk,m)[1] ⊂ (F ∗)(k−1)(m−1) is defined by condition:

rank(


s11 s12 ... s1m

s21 s22x22 ... s2mx2m

... ... ... ...
sk1 sk2xk2 ... skmxkm

 ·

s11 s21 ... sk1

s12
s22

x22
... sk2

xk2

... ... ... ...
s1n

s2n
x2n

... skn
xkn

−


1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1

) ≤ n−m (133)
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Further, apply this lemma to the case of MnBk,n. It can be shown in usual way that rank∆ ≥ n. Also, ∆
has rank n iff 

s11 s12 ... s1n

s21 s22x22 ... s2nx2n

... ... ... ...
sk1 sk2xk2 ... sknxkn



s11 s21 ... sk1

s12
s22

x22
... sk2

xk2

... ... ... ...
s1n

s2n
x2n

... skn
xkn

 =


1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1

 (134)

As we know from subsection 3.3, we have the following relations:

n∑
j=1

s2
ij =

n∑
j=1

rij = 1, i = 1, ..., k (135)

Thus, we get k(k − 1) equations defining variety MnBk,n ⊂ (F ∗)(k−1)(n−1).
Remark. Consider case rij = 1

n and k = n. It is easy that these equations coincide with equations defining
generalized Hadamard matrix.

Let us formulate the following useful proposition:

Proposition 51. For any irreducible component C of MnBk,n, we have the following inequality:

dimFC ≥ (k − 1)(n− 1)− k(k − 1) = (n− k − 1)(k − 1). (136)

Proof. Straightforward.

6.2 The fibred product.

In this subject we will study properties of morphisms: f ′n :MnBk,n →MnBr(Γk,m)[1]×MnÃk(ri)[~1,m]MnBr(Γk,n−m)[1]

and fn :MnBn,n →MnBn,m ×MnÃk(ri)[~1,m]MnBn,n−m.

Remark. Note that if k ≤ n
2 , then we can choose m such that k+m ≤ n, k+n−m ≤ n. Using proposition

44, morphism fk,n(m) has the following view:

f ′n :MnBk,n → (F ∗)(k−1)(m−1) ×MnÃk(ri)[~1,m] (F ∗)(k−1)(n−m−1) (137)

Recall that MnBk,n is a subvariety defined by equations (134). Consider composition of morphisms:

Ãk(ri)→ Br(Γk,m)→ FΓk,m. Using proposition 44, we get the following commutative diagram:

Mk+mBr(Γk,m)[1]
∼= //

��

(F ∗)(k−1)(m−1)

uulllllllllllll

Mk+mÃk(ri)[~1,m]

(138)

If n < k +m, then we get the following commutative diagram:

MnBr(Γk,m)[1]
s1 //

i∗

��

(F ∗)(k−1)(m−1)

vvmmmmmmmmmmmmm

MnÃk(ri)[~1,m]

(139)

where s1 is an immersion. Also, one can consider similar commutative diagram for algebra Br(Γk,n−m). Denote
by s2 the natural morphism: MnBr(Γk,n−m)[1]→ (F ∗)(k−1)(n−m−1). One can show that we have the following
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commutative diagram:

MnBr(Γk,m)[1]

i∗

��

s1 // (F ∗)(k−1)(m−1)

uukkkkkkkkkkkkkk

MnÃk(ri)[~1,m]

MnBr(Γk,n−m)[1]

i′∗

OO

s2 // (F ∗)(k−1)(n−m−1)

iiSSSSSSSSSSSSSS

(140)

Therefore, we have well-defined fibred product: (F ∗)(k−1)(m−1)×MnÃk(ri)[~1,m] (F ∗)(k−1)(n−m−1) and immersion

S = s1 × s2 : MnBr(Γk,m)[1]×MnÃk(ri)
MnBr(Γk,n−m)[1]→ (F ∗)(k−1)(m−1) ×MnÃk(ri)[~1,m] (F ∗)(k−1)(n−m−1).

Denote the coordinates of (F ∗)(k−1)(n−1), (F ∗)(k−1)(m−1) and (F ∗)(k−1)(n−m−1) by x2,2, ..., xk,n, z2,2, ..., zk,m
and y2,2, ..., yk,n−m respectively. Morphism prm is defined by formula:

prm :

x2,2 ... xk,2
... ... ...
x2,n ... xk,n

 7→ (

x2,2 ... xk,2
... ... ...
x2,m ... xk,m

 ,

x2,m+2

x2,m+1
...

xk,m+2

xk,m+1

... ... ...
x2,n

x2,m+1
...

xk,n
xk,m+1

) (141)

We have the following commutative diagram:

(F ∗)(k−1)(n−1)

prm

,,YYYYYYYYYYYYYYYYYYYYYYYYYY

MnBk,n

⊆
44hhhhhhhhhhhhhhhhhhhh

//

f ′n

**VVVVVVVVVVVVVVVVVVVV (F ∗)(k−1)(m−1) × (F ∗)(k−1)(n−m−1)

MnBr(Γk,m)[1]×MnÃk(ri)
MnBr(Γk,n−m)[1]

S′
22ffffffffffffffffffffffff

(142)
Morphism S′ is a composition of S and natural immersion. Thus, morphism f ′n is a map of elimination of k− 1
variables.

Describe fibred productMnBr(Γk,m)[1]×MnÃk(ri)[~1,m]MnBr(Γk,n−m)[1] as subvariety of the algebraic torus

(F ∗)(k−1)(m−1) × (F ∗)(k−1)(n−m−1). For simplicity, if i = 1 or j = 1, then xi,j = 1, zi,j = 1, yi,j = 1. Express
these elements in terms of zi,j . We will use the following notation:

hi1,i2 =

m∑
j=1

si1,jsi2,jzi1,j/zi2,j , h
′
i1,i2 =

n∑
j=m+1

si1,jsi2,jyi1,j−m/yi2,j−m. (143)

Using formula (114) and definitions of homomorphisms i and i′, one can obtain that

i(Trqi1 ...P qilP ) = c(r) · hi1,i2hi2,i3 ...hil,i1 , i′(Trqi1 ...P qilP ) = c′(r)(−1)s · h′i1,i2h
′
i2,i3 ...h

′
il,i1

(144)

As we know from proposition 43, MnÃk(ri)[~1,m] is a subvariety ofMkQΓ[k][~1]. We can associate equation
with any necklace (i1, ..., is) of QΓ[k] as follows:

c(r)hi1,i2 ...his,i1 = c′(r)(−1)sh′i1,i2 ...h
′
is,i1 . (145)

Using corollary 45, we can choose only generating necklaces.
Similar results for morphism fn are true.
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6.3 Subvarieties E1 and E2.

Define two subvarieties E1(f ′n) and E2(f ′n) of the fibred product as follows:

E1(f ′n) = {x ∈MnBr(Γk,m)×MnÃk(ri)[~1,m]MnBr(Γk,n−m)|dimF f
′
n
−1

(x) ≥ 1} (146)

E2(f ′n) = {x ∈MnBr(Γk,m)×MnÃk(ri)[~1,m]MnBr(Γk,n−m)|f ′n
−1

(x) = ∅} (147)

Consider point x = (x1, x2) ∈ MnBr(Γk,m) ×MnÃk(ri)[~1,m] MnBr(Γk,n−m) such that i∗(x1) = i′∗(x2) =

x′ ∈ MnÃk(ri)[~1,m]. Using proposition 36, we get that fiber f ′n
−1

(x) is an algebraic torus of dimension less

or equal k − 1. Also, condition f ′n
−1

(x) ⊆ AutÃk(ri)
(x′′)/F ∗, where x′′ is a Ãk(ri) - submodule of x′ generated

by Imqi and ImPqi (proposition 36). Using proposition 37, we get that if dimF f
′
n
−1

(x) ≥ l − 1 then graph
Gk(x′′) = Gk(x′) has at least l connected components. Thus, we have the following filtration of E1:

E
(k−1)
1 (f ′n) ⊆ ... ⊆ E(1)

1 (f ′n) = E1(f ′n) (148)

where E
(i)
1 (f ′n) = {x ∈ E1|dimF f

′
n
−1

(x) ≥ i}.
For fixed partition θ: {1, ..., k} into s + 1 non-intersecting subsets I1, ..., Is+1 consider C ′(θ) the subvariety

of (F ∗)(k−1)(m−1) ×MnÃk(ri)[~1,m] (F ∗)(k−1)(n−m−1) defined by equations:

m∑
i=1

sl1,isl2,izl1,i/zl2,i = 0,

m∑
i=1

sl1,isl2,izl2,i/zl1,i = 0, (149)

n∑
i=m+1

sl1,isl2,iyl1,i−m/yl2,i−m = 0,

n∑
i=m+1

sl1,isl2,iyl2,i−m/yl1,i−m = 0. (150)

for any l1 ∈ Ik1
and l2 ∈ Ik2

, k1 6= k2.
Denote by C(θ) = S−1(C ′(θ)) ⊂MnBr(Γk,m)×MnÃk(ri)[~1,m]MnBr(Γk,n−m).

Proposition 52. E
(s)
1 (f ′n) ⊂

⋃
θ C(θ), where θ runs over all partitions of {1, ..., k} into s+ 1 non-intersecting

subsets.

Proof. Using proposition 36, we get that qiPqj = 0 for any i, j from different subsets. Thus, we have to
express condition qiPqj in terms of algebra Br(Γk,m). We get that ql1(p1 + ... + pm)ql2 = 0. Therefore,
ql1(p1 + ...pm)ql2p1 = 0 and Tr(ql1(p1 + ... + pm)ql2p1) =

∑m
i=1 si,l1si,l2xi,l1/xi,l2 = 0. Analogously, one can

obtain another equations.

Further, consider subvariety E2(f ′n). It is easy that x = (x1, x2) ∈ E2(f ′n) iff there is non-empty intersection
of closures of GLn(F ) - orbits of i∗(x1) and i′∗(x2) and i∗(x1) 6= i′∗(x2). In this case, there is a semisimple
representation x′′ ∈ i∗(x1) ∩ i′∗(x2). Therefore, if x ∈ E2(f ′n) then x′′ has non-trivial stabilizer. It is easy that
characters of x and x′′ are the same.

Proposition 53. Let ρ be a representation of Ãk(ri). Consider GLn(F ) - orbit of ρ - O(ρ). Assume that there

is a semisimple Ãk(ri) - representation ρ′′ ∈ O(ρ) with non-trivial stabilizer. Then there are two complement
subsets I, J of {1, ..., k} satisfying to condition: Trρ(qi1P...qisP ) = 0 if {i1, ..., is}∩I 6= ∅ and {i1, ..., is}∩J 6= ∅.

Proof. Using proposition 36, we get that there are at least two subsets I, J such that I∪J = {1, ..., k}, I∩J = ∅
and ρ′′(qiPqj) = ρ′′(qjPqi) = 0 for any i ∈ I, j ∈ J . Thus, Trρ′′(qi1P...qisP ) = 0 if {i1, ..., is} ∩ I 6= ∅ and
{i1, ..., is} ∩ J 6= ∅. Since characters of ρ and ρ′′ are the same, we get the required statement.

For fixed partition θ: {1, ..., k} = I ∪ J, I ∩ J = ∅, we will consider subvariety D(θ) ⊂
MnBr(Γk,m)×MnÃk(ri)

MnBr(Γk,n−m) defined by equations:

i∗(Trqi1P...qisP ) = 0 = i′∗(Trqi1P...qisP ), (151)

if {i1, ..., is} ∩ I 6= ∅ and {i1, ..., is} ∩ J 6= ∅. Using proposition 53, we get the following:
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Corollary 54. E2(f ′n) ⊂
⋃
θD(θ), where union taken over all possible partitions of {1, ..., k} into two non-empty

complement subsets I, J .

Fix partition θ = I ∪ J . Consider subvarieties D′1(θ) ⊂ (F ∗)(k−1)(m−1), D′2(θ) ⊂ (F ∗)(k−1)(n−m−1) defined
by equations:

hi1,i2 ...his,i1 = 0 (152)

and
h′i1,i2 ...h

′
is,i1 = 0 (153)

respectively. Denote by Di(θ), i = 1, 2 the s−1
i (D′i(θ)), i = 1, 2 respectively. It is easy that

D(θ) = D1(θ)×MnÃk(ri)[~1,m] D2(θ). (154)

6.4 Combinatorial description of E2.

In this subsection we will introduce the notion of maximal θ-subquivers for fixed partition θ. Using this notion,
we get the description of components of D1(θ) and D2(θ).

Firstly, consider the following description of the varieties. Consider polynomial ring F [hi,j ], i 6= j, i, j =
1, ..., k. We have a homomorphism of rings: H1 : F [hi,j ] → F [zi,j ] defined by formulas (143). Thus, we have
the morphism of affine varieties: H∗1 : (F ∗)(k−1)(m−1) → F k(k−1). Also, we can define morphism: H∗1 ◦ s1 :
MnBr(Γk,m) → (F ∗)(k−1)(m−1) → F k(k−1). We can consider variety D′′1 (θ) ⊂ F k(k−1) defined by equations
(152). It is easy that D′1(θ) = (H∗1 )−1(D′′1 (θ)) and D1(θ) = (H∗1 ◦ s1)−1(D′′1 (θ)). Analogously, define H2 :
F [hi,j ]→ F [yi,j ]. In this case, D′2(θ) = (H∗2 )−1(D′′2 (θ)) and D2(θ) = (H∗2 ◦ s2)−1(D′′2 (θ)).

We have the following combinatorial description of the set of the equations defining of D′′1 (θ). Consider
complete double quiver QΓ[k]. For any subquiver Q of QΓ[k], denote by V (Q) and Arr(Q) the sets of vertices and
arrows of the quiver Q respectively. We will consider subquivers of QΓ[k] such that V (Q) = V (QΓ[k]) = {1, ..., k}.
We can associate with any subquiver Q ⊂ QΓ[k] variety M(Q) ⊂ (F )k(k−1) as follows: M(Q) is a subvariety

of (F )k(k−1) defined by equations hi,j = 0 for ai,j ∈ Arr(QΓ[k]) \ Arr(Q). It is clear that if Q′ ⊆ Q′′, then
M(Q′) ⊆M(Q′′).

Fix the partition of vertices of the QΓ[k]: θ = I ∪ J . Let us define the notion of θ - subquiver of QΓ[k]. The
subquiver Q of QΓ[k] is said to be a θ-subquiver if V (Q) = {1, ..., k} and Q satisfy to condition: there are no
cycles c = (i1, ..., is) ∈ Q such that (i1, ..., is) ∩ I 6= ∅, (i1, ..., is) ∩ J 6= ∅.

We can define partial order on the set of subquivers of QΓ[k] by natural way. Restrict this partial order to
set of θ - subquivers. It leads us to notion of maximal θ - subquiver of QΓ[k]. Denote by Max(θ) the set of
θ-maximal subquivers of QΓ[k].

Proposition 55. • For any θ-subquiver Q ⊂ Qk, we have the following immersion:

M(Q) ⊂ D′′1 (θ). (155)

• We have the following identity for D′′1 (θ):

D′′1 (θ) =
⋃

Q∈Max(θ)

M(Q) (156)

Proof. First statement is easy. Prove the second statement. With any irreducible component C of D′′1 (θ) we
can associate the subquiver Q(C) ⊂ QΓ[k] as follows: aij ∈ Q(C) iff ideal of component C contains hij . It can
be shown in usual way that Q(C) is a θ - subquiver and C ⊂M(Q(C)). Thus, D′′1 (θ) ⊂

⋃
M(Q), where union

is taken over all θ-subquivers. It is easy that we can take only θ-maximal subquivers.

This proposition motivates us to study maximal θ-subquivers. For this purpose, introduce the notion of linear
connected component of a quiver Q. We will say that set of vertices I generates linear connected component if

• for any pair vertices i1, i2 there are path from i1 to i2 and path from i2 to i1
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• for any vertices j /∈ I, i ∈ I there is no path from j to i or there is not path from i to j.

We can define the equivalence relation on the set of vertices as follows: i ∼ j iff there are path from i to j and
path from j to i. It is easy that linear connected component is an equivalence class. We will denote by {I}
the linear connected component (briefly l.c.c.) generating by vertex set I. Consider two l.c.c. {I1} and {I2}.
We will say that {I1} > {I2} if there is an arrow from some vertex i1 ∈ I1 to some vertex i2 ∈ I2. It follows
from definition of linear connectedness that if this order is well-defined. Let us formulate the following trivial
property of l.c.c.:

Proposition 56. • Set of l.c.c. of quiver Q is partially ordered.

• Quiver Q is connected iff set of l.c.c. is linear ordered.

Proof. It is easy.

Consider maximal θ-subquiver Q. It is clear that there are no l.c.c. of Q which contains vertices from I and
J . Thus, one can consider decomposition of I and J into union of vertex sets of l.c.c. of Q:

I = ∪l1i=1Ii, J = ∪l2j=1Jj (157)

We have the following useful property of maximal θ - subquivers:

Proposition 57. Fix partition θ = I ∪ J . Consider θ-subquiver Q ⊂ QΓ[k]. We have the decomposition of
vertex set {1, ..., k} of Q into union of vertex sets of l.c.c. (157). Q is maximal θ - subquiver of QΓ[k] iff

• Q is connected.

• Consider a pair of l.c.c. {K1}, {K2} : {K1} > {K2}. Then for any pair of vertices v1 ∈ K1, v2 ∈ K2 there
is an arrow from v1 to v2.

Proof. It is easy that if Q satisfy to conditions, then Q is a maximal θ-subquiver. Converse statement is easy
too.

Remark. Assume that we have the following ordering on the set of l.c.c. of maximal θ - subquiver Q: {I1} >
... > {Ik1} > {J1} > ... > {Ik1+1} > ... > {Jl2}. Consider another partition: θ′ : I1

⋃
K,K =

⋃l1
i=2 Ii∪

⋃l2
j=1 Jj .

It is easy that Q is θ′ - subquiver of Qk, but not maximal.
Thus, problem of finding

⋃
D(θ) has the following parts:

• one have to classify all maximal θ-subquivers for any partition θ of {1, ..., k},

• one have to calculate (H∗1 ◦ s1)−1(M(Q)) ⊂MnBr(Γk,m) for maximal θ-subquiver Q.

Consider the case ofMnBn,n. Assume that ri 6= 0, 1. Subvariety E1 has description quite similar to case of
MnBk,n. Consider subvariety E2 ⊂MnBn,m×MnAn(ri)[~1,m]MnBn,n−m. Also, we have to study all partitions
and corresponding them maximal θ-subquivers. Let us note the following property of morphism H∗1 ◦ s1 in case
of MnBn,n:

Proposition 58. Fix partition θ. Consider maximal θ - subquivers Q with condition: there is a l.c.c. of Q
consisting of one vertex. Then (H∗1 ◦ s1)−1(M(Q)) = ∅.

Proof. Consider maximal θ - subquiver Q with l.c.c. consisting one vertex i. Then for any vertex j we have the
following identity hi,jhj,i = TrPqiPqj = 0. In the case of MnBn,n, we have the identity

∑n
i=1 qi = 1. Thus,

ri = TrPqiP (qi +
∑
j 6=i qj) = TrPqiPqi = r2

i . Thus, if ri 6= 0, 1, then (H∗1 ◦ s1)−1(M(Q)) = ∅.

This proposition means that we can consider only maximal θ-subquivers with condition: any l.c.c. has more
than 1 vertex.
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6.5 Varieties M6B3,6, M6B6,6 and fibred products.

In this subsection we will apply results of subsections 6.2 and 6.3 in the case of M6B3,6 and M6B6,6.
Fix rij = 1

6 . Thus, ri = 1
2 . Consider case of M6B3,6. Denote by X(3, 6), X(3, 3) and Y (3) the varieties

M6B3,6,M6B(Γ3,3) andM6Ã3(1/2) respectively. As we know, X(3, 3) = (F ∗)4 and Y (3) =M3QΓ[3][1]. There
are only 5 generating necklaces in the quiver QΓ[3]. They correspond to the following elements: A = TrPq1Pq2,
B = TrPq1Pq3, C = TrPq2Pq3, α = TrPq1Pq2Pq3 and β = TrPq1Pq3Pq2. One can check that Y (3) is defined
by equation:

ABC = αβ. (158)

In this case, we get the following commutative diagram:

X(3, 3)×Y (3) X(3, 3) //

��

X(3, 3)

σ◦i∗

��
X(3, 3)

i∗ // Y (3)

(159)

where σ acts on Y (3) by the rule: σ : P 7→ 1− P .
Consider fibred product: X(3, 3)×Y (3) X(3, 3). Let us formulate the following:

Lemma 59. Any irreducible component of X(3, 3)×Y (3) X(3, 3) has dimension more or equal 3.

Proof. Straightforward.

We have natural morphism: f ′6 : X(3, 6)→ X(3, 3)×Y (3)X(3, 3). We will study properties of this morphism.
Namely, we will calculate varieties E1(f ′6) and E2(f ′6).

We obtain the following result:

Proposition 60. • Subvariety E1(f ′6) consists of finite set of points,

• dimension of any component of E2(f ′6) is less or equal 3.

Proof. See Appendix A.

Denote by Ci, i = 1, ..., s and C ′i, i = 1, ..., s′ the components of X(3, 3) ×Y (3) X(3, 3) and X(3, 6) which
dimension more or equal to 4.

Corollary 61. • s = s′

• there is a bijection i ↔ j between set Ci, i = 1, ..., s and C ′j , j = 1, ..., s′ such that f ′6(Ci) = C ′j and
restriction of f ′6 to Ci is a birational morphism.

Remark We will prove that there is only one 4-dimensional irreducible component of X(3, 3)×Y (3) X(3, 3)
in the Section ??. Therefore, we get that X(3, 6) is a 4-dimensional and irreducible.

Consider the second case. For simplicity, denote by X(6, 6) and Y (6) the varieties M6B6,6 and

M6A6(1/2)[~1, 3] respectively. Similar to subsection 10, we can define involution σ on Y (6). We have the
following commutative diagram:

X(3, 6)×Y (3) X(3, 6) //

��

X(3, 6)

σ◦i∗6
��

X(3, 6)
i∗6 // Y (6)

(160)

Therefore, we have the morphism: f6 : X(6, 6)→ X(3, 6)×Y (6) X(3, 6).

Proposition 62. • Variety E1(f6) consists of finite set of points.

• dimFE2(f6) ≤ 3.
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Proof. See Appendix B.

Denote by C =
⋃s
i=1 Ci, C

′ =
⋃s′
i=1 C

′
i the union of four-dimensional irreducible components of X(6, 6) and

the union of four-dimensional irreducible components of X(3, 6) ×Y (6) X(3, 6) respectively. Using proposition
62, we obtain the following result:

Proposition 63. • s = s′,

• there is a bijection: i↔ j such that f6(Ci) = C ′j and f6|Ci , i = 1, ..., s is a birational isomorphism.

Conjecture 64. s = s′ = 1, i.e. there is only one four-dimensional irreducible component of X(6, 6).

Remark. We will prove that s > 0 in Section ??.

7 The case of graph Γ3,3.

In this section we will consider the case of Br(Γ3,3), i.e. rij = r for i, j = 1, 2, 3. Let p1, p2, p3, q1, q2, q3 be the
generators of Br(Γ3,3). Variety M6Br(Γ3,3)[1] parameterizes 6-dimensional Br(Γ3,3)-modules of rank 1. Let

P and Q be the elements
∑3
i=1 pi and

∑3
i=1 qi respectively. Consider unital algebra Ã3(3r) with generators

w1, w2, w3,W with relations: w2
i = wi,W

2 = W,wiWwi = 3rwi, i = 1, 2, 3. In this subsection, we will consider
the following morphisms of algebras: ψ1,2 : A3

r → Br(Γ3,3) given by formulas:

ψ1 : wi 7→ qi,W 7→ P (161)

ψ2 : wi 7→ pi,W 7→ Q (162)

It is evident that there is the involution τ on the algebra Br(Γ3,3) defined by rule: pi ↔ qi, i = 1, 2, 3. And
hence, ψ2 = ψ1 ◦ τ .

For simplicity, we will use the following notation:

X =M6Br(Γ3,3)[1], Y (3) =M6A3(3r)[(1, 1, 1, 3)] (163)

Also, we can consider variety D parameterizing GL6(F)-orbits of pair of the projectors (P,Q) of rank 3 with
relation TrPQ = Tr(p1 + p2 + p3)(q1 + q2 + q3) = 9r. In this subsection, we will study properties of morphisms:
X → Y (3) and X → Y (3)×D Y (3).

7.1 Preliminary remarks.

Consider algebra Pr(Γk,m) with generators p1, ..., pk, q1, ..., qm. Algebras Pr(Γk,1), Pr(Γ1,m) and Pr(Γ1,1) are

generated by elements P =
∑k
i=1 pi, q1, ..., qm, p1, ..., pk, Q =

∑m
i=1 qi and P,Q respectively.

One can show that
Pr(Γk,m) ∼= Pr(Γk,1) ∗Pr(Γ1,1) Pr(Γ1,m). (164)

Thus, we have the isomorphism of varieties:

Repm+kPr(Γk,m)[~1] ∼= Repm+kPr(Γk,1)[~1,m]×Repm+kPr(Γ1,1)[k,m] Repm+kPr(Γ1,m)[k,~1]. (165)

For moduli varieties there is the commutative diagram:

Mm+kPr(Γk,m)[~1] //

��

Mm+kPr(Γk,1)[~1,m]

��
Mm+kPr(Γ1,m)[k,~1] //Mm+kPr(Γ1,1)[k,m]

(166)
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The dimension counting shows us that this diagram is not a fibred product. Also, using considering of
projections: Mm+kPr(Γk,m)[~1] → F km, Mk+mPr(Γk,1)[~1,m] → F k, Mm+kPr(Γ1,m)[k,~1] → Fm and
Mm+kPr(Γ1,1)[k,m]→ F , we get the commutative diagram:

Mk+m,1Br(Γk,m) //

��

Mm+kÃk(ri)[~1,m]

��
Mm+kÃm(ri)[k,~1] // D

(167)

Let us come back to the case k = m = 3, rij = r 6= 0. In this situation, we can identify algebras Ãm(3r) and

Ãk(3r) via involution τ : pi ↔ qi, i = 1, 2, 3. Using notation, we obtain the following commutative diagram:

X
pr //

pr◦τ
��

Y

��
Y // D

(168)

As we know from proposition 44, Mk+mBr(Γk,m)[1] = (F ∗)(k−1)(m−1). Thus, X = (F ∗)4. Coordinates of X
may be chosen as follows:

x1 =
1

r2
Trp1q1p2q2, x2 =

1

r2
Trp1q1p3q2, y1 =

1

r2
Trp1q1p2q3, y2 =

1

r2
Trp1q1p3q3. (169)

Clearly, X = SpecF [x±1
1 , x±1

2 , y±1
1 , y±1

2 ]. It can be shown in usual way that τ : x1 7→ 1
x1
, y2 7→ 1

y2
, x2 7→

1
y1
, y1 7→ 1

x2
. As we know, commutative ring O(Y ) is generated by a(i1,i2) = 1

r2 Tr(Pqi1Pqi2) and a(i1,i2,i3) =
1
r3 Tr(Pqi1Pqi2Pqi3) for i1, i2, i3 = 1, 2, 3. We take the coefficients 1

r2 and 1
r3 for simplicity of calculations. Also,

recall from subsection 6.5:

Y = SpecF [a(1,2), a(1,3), a(2,3), a(1,2,3), a(1,3,2)]/〈a(1,2)a(1,3)a(2,3) = a(1,2,3)a(1,3,2)〉

Describe the variety D in terms of traces. Recall that D is the variety of projectors P and Q of rank 3 and
satisfying to condition: TrPQ = 9r. One can show that D = F 2 = SpecF [ 1

r2 TrPQPQ, 1
r3 TrPQPQPQ].

7.2 Identities for projectors p1, p2, p3; q1, q2, q3.

In this subsection we prove some identity for projectors p1, p2, p3, q1, q2, q3 of rank 1 with conditions: Trpiqj = r.
We have the following formulas:

1

r2
Trpiqjp1q1 =

1

r2
Trp1q1piqjp1, (170)

and
1

r2
Trpiq1p1qjp1

1

r2
Trp1q1piqjp1 = 1. (171)

Note the following useful property of projectors p1, p2, p3; qi, qj of rank 1 with condition Trpiqj = r for all
i, j.

Lemma 65. Consider projectors: p1, p2, p3; q1, q2 of rank 1 with condition Trpiqj = r. Then we have the
following identity:

1

r2
Tr(p1 + p2 + p3)q1(p1 + p2 + p3)q2 =

1

r3
Tr(p1(q1 + q2)p2(q1 + q2)p3(q1 + q2)) + 1 = (172)

1

r3
Tr(p1(q1 + q2)p3(q1 + q2)p2(q1 + q2)) + 1
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Proof. Using relations: pi = 1
r2 piq1p1q1pi, we get:

1

r3
Trp1(q1 + q2)p2(q1 + q2)p3(q1 + q2) =

1

r7
Tr(p1(q1 + q2)p2q1p1 · p1q1p2(q1 + q2)p3q1p1 · p1q1p3(q1 + q2)p1) =

1

r2
Trp1(q1 + q2)p2q1p1 ·

1

r3
Trp1q1p2(q1 + q2)p3q1p1 ·

1

r2
Trp1q1p3(q1 + q2)p1 = (1 +

1

x1
)(1 +

x1

x2
)(1 + x2).

Moreover,

(1 +
1

x1
)(1 +

x1

x2
)(1 + x2) = (1 + x1 + x2)(1 +

1

x1
+

1

x2
)− 1.

We can transform the right expression into:

1

r2
Tr(p1 + p2 + p3)q1(p1 + p2 + p3)q2 − 1 (173)

This proves our statement.

Analogously, we get the similar formula for p1, p2, p3, qi, qj for any i, j and for q1, q2, q3; pi, pj , i 6= j, i, j =
1, 2, 3.

Further, let us formulate the following proposition:

Proposition 66. Consider projectors p1, p2, p3; q1, q2, q3 of rank 1 with condition Trpiqj = r. Denote by P and
Q the sums p1 + p2 + p3 and q1 + q2 + q3 respectively. Then we hold the following identity:∏

(i,j)∈{1,2,3}

(
1

r2
Tr(PqiPqj)− 1) =

∏
(i,j)∈{1,2,3}

(
1

r2
Tr(QpiQpj)− 1), (174)

where product is taken over all non-ordered pairs (i, j) ∈ {1, 2, 3}.

Proof. Using relation (172), we obtain the following formula:

(
1

r2
TrPq1Pq2 − 1)(

1

r2
TrPq2Pq3 − 1)(

1

r2
TrPq3Pq1 − 1) =

1

r3
Trp1(q1+q2)p2(q1+q2)p3(q1+q2)· 1

r3
Trp1(q2+q3)p2(q2+q3)p3(q2+q3)· 1

r3
Trp1(q1+q3)p2(q1+q3)p3(q1+q3) =

(1 +
1

x1
)(1 +

x1

x2
)(1 + x2) · (1 +

x1

y1
)(1 +

y1

x1

x2

y2
)(1 +

y2

x2
) · (1 + y1)(1 +

y2

y1
)(1 +

1

y2
) =

(1 +
1

x1
)(1 +

x1

y1
)(1 + y1) · (1 +

x1

x2
)(1 +

y1

x1

x2

y2
)(1 +

y2

y1
) · (1 + x2)(1 +

y2

x2
)(1 +

1

y2
) =

1

r3
Trq1(p1+p2)q2(p1+p2)q3(p1+p2)· 1

r3
Trq1(p2+p3)q2(p2+p3)q3(p2+p3)· 1

r3
Trq1(p1+p3)q2(p1+p3)q3(p1+p3) =

Using proposition 65, we get the required identity:

(
1

r2
TrPq1Pq2 − 1)(

1

r2
TrPq2Pq3 − 1)(

1

r2
TrPq3Pq1 − 1) =

(
1

r2
TrQp1Qp2 − 1)(

1

r2
TrQp2Qp3 − 1)(

1

r2
TrQp3Qp1 − 1)
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7.3 Properties of the map X → Y ×D Y .

Denote by u1, u2, u3 the following elements:

u1 = a(1,2) + a(1,3) + a(2,3) =
1

r2
(TrPq1Pq2 + TrPq1Pq3 + TrPq2Pq3), (175)

u2 = a(1,2,3) + a(1,3,2) =
1

r3
(TrPq1Pq2Pq3 + TrPq1Pq3Pq2), (176)

u3 = (a(1,2) − 1)(a(1,3) − 1)(a(2,3) − 1) = (
1

r2
TrPq1Pq2 − 1)(

1

r2
TrPq2Pq3 − 1)(

1

r2
TrPq3Pq1 − 1). (177)

One can consider elements ui as elements of F [x±1
1 , x±1

2 , y±1
1 , y±1

2 ]. It can be shown in usual way that τ(ui) =
ui, i = 1, 2, 3.

Element u1 is a TrPQPQ up to constant. Expression u2 is a linear combination of TrPQPQPQ, TrPQPQ
and constant. Also, element u3 is described in proposition 66.

Consider 3-dimensional affine space U = SpecF [u1, u2, u3]. There exists a natural surjective map: U → D.
There are natural surjective maps: Θ : Y → U .

We obtain that variety Y ×U Y is a divisor of the Y ×D Y , dimFY ×U Y = 5,dimFY ×D Y = 6. Thus, we
get the following commutative diagram:

X
pr

  @@@@@@@
pr◦τ

~~~~~~~~~

Y
Θ

  @@@@@@@@

��0
0000000000000 Y

Θ

~~~~~~~~~~

����������������

U

��
D

(178)

Consider natural map: pr12 = (pr, pr ◦ τ) : X → Y ×D Y . Using commutative diagram (178), we obtain the
following proposition:

Proposition 67. pr12(X) ⊂ Y ×U Y ⊂ Y ×D Y .

Consider action of symmetric group S3 acting by permutations of the projectors pi on the variety X. We
have injection: j : F [X]S3 → F [X] and injection twisted by involution τ : τ ◦ j : F [X]S3 → F [X]. Thus, we

can consider the intersection F [X]S3 and τ(F [X]S3) in the ring F [X]. It is easy τ(F [X]S3) = F [X]τS3τ
−1

=
F [X]τS3τ . Moreover, group τS3τ acts on the X by permutations of the projectors qi. Therefore, one can check
that intersection F [X]S3 ∩ τ(F [X]S3) = F [X]S3×S3 , where S3 × S3 acts on the X by permutations of pi and
qj . Rings F [X]S3 and τ(F [X]S3) are isomorphic. Identify these rings via isomorphism τ . Also, note that
τ(S3 × S3)τ = S3 × S3 in the group Aut(Γ3,3). Thus, we have the well-defined involution τ on the F [X]S3×S3

such that we have the following commutative diagram:

F [X]S3×S3
i // F [X]

F [X]S3×S3

τ

OO

i // F [X]

τ

OO
(179)

where i is standard injection. For i we have the decomposition j ◦ i1, where i1 : F [X]S3×S3 → F [X]S3 and
j : F [X]S3 → F [X], here S3 is the group acting by permutations of pi. Using relation τ ◦ i ◦ τ = i, we obtain
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the decomposition i = (τ ◦ j) ◦ (i1 ◦ τ). Thus, we get the following commutative diagram:

F [X]S3
j // F [X]

F [X]S3×S3
i1◦τ //

i1

OO

F [X]S3

τ◦j

OO
(180)

Further, consider immersion: i2 : F [Y ]→ F [X]S3 . It is easy that this immersion is compatible with action
another symmetric group S3. Thus, we have the following commutative diagram:

F [Y ]
i2 // F [X]S3

F [Y ]S3
θ //

ψ

OO

F [X]S3×S3

i1

OO
(181)

Here θ is the immersion induced by i2, ψ is standard immersion.
Moreover, we can consider the situation of the immersion i1 ◦ τ : F [X]S3×S3 → F [X]S3 . In this situation,

we have the following commutative diagram:

F [X]S3×S3
i1◦τ // F [X]S3

F [Y ]S3

τ◦θ

OO

ψ // F [Y ]

i2

OO
(182)

Actually, using relation i1 ◦ θ = i2 ◦ψ, we get the relation: (i1 ◦ τ) ◦ (τ ◦ θ) = i2 ◦ψ. Also, direct checking show
us that the following diagram:

F [X]S3×S3 F [Y ]S3
θoo

F [Y ]S3

τ◦θ

OO

F [U ]oo

OO
(183)

Here injection: F [U ]→ F [Y ]S3 is given by elements u1, u2, u3.
Therefore, we obtain the following commutative diagram:

F [X] F [X]S3
joo F [Y ]

i2oo

F [X]S3

τ◦j

OO

F [X]S3×S3
i1◦τoo

i1

OO

F [Y ]S3

ψ

OO

θoo

F [Y ]

i2

OO

F [Y ]S3
ψoo

τ◦θ

OO

F [U ]

OO

oo

(184)

Further, let us apply to this diagram the functor Spec. Also, let us denote by X , Y the varieties X/S3 =
SpecF [X]S3 and Y/S3 = SpecF [Y ]S3 respectively. Thus, we get the following proposition:
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Proposition 68. There is the following commutative diagram:

X

π◦τ
��

π // X/S3
φ //

π1

��

Y

π1

��
X/S3

φ

��

τ◦π1 // X
ψ //

ψ◦τ
��

Y

η

��
Y

π1 // Y
η // U

(185)

where π, π1 are standard factorization maps, φ is a well-defined map: X/S3 → Y . Also, we have the following
identity: pr = φ ◦ π.

7.4 General fibers of the morphism pr.

In this subsection we will prove that the morphism pr has degree 12.
Let us express the morphism pr in coordinates:

a(1,2) = (1 +
1

x1
+

1

x2
)(1 + x1 + x2), (186)

a(1,3) = (1 +
1

y1
+

1

y2
)(1 + y1 + y2) (187)

and
a(2,3) = (1 +

y1

x1
+
y2

x2
)(1 +

x1

y1
+
x2

y2
). (188)

Analogous to this formula, we obtain the following expressions:

a(1,2,3) = (1 + x1 + x2)(1 +
y1

x1
+
y2

x2
)(1 +

1

y1
+

1

y2
) (189)

and

a(1,3,2) = (1 +
1

x1
+

1

x2
)(1 +

x1

y1
+
x2

y2
)(1 + y1 + y2). (190)

Fix a general point P = (A = a(1,2), B = a(1,3), C = a(2,3), α = a(1,2,3), β = a(1,3,2)). Then for calculation of

fiber pr−1
1 (P ) we have to compute a number of solutions of the system of equations (186), (187), (188), (189)

and (190) for the point P .
Assume that A,B,C 6= 0. Hence, α, β 6= 0. Thus, we can simplify formulas (189) and (190) as follows:

(1 + x1 + x2)(1 +
1

y1
+

1

y2
) =

α

C
(1 +

x1

y1
+
x2

y2
), (191)

(1 +
1

x1
+

1

x2
)(1 + y1 + y2) =

β

C
(1 +

y1

x1
+
y2

x2
). (192)

For the calculation of fiber pr−1(P ) , let us compactify of (F ∗)4. We will choose the following compactifi-
cation: (F ∗)4 is an open subvariety of P2

t × P2
z as follows. We will denote by ((t0 : t1 : t2), (z0 : z1 : z2)) the

coordinates of P2
t × P2

z. We have the following formulas:

x1 =
t1
t0
, x2 =

t2
t0
, y1 =

z0

z1
, y2 =

z0

z2
. (193)

for coordinates of (F ∗)4 and P2
t × P2

z.
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We get the following system of equations:

(t0 + t1 + t2)(t0t1 + t1t2 + t2t0) = At0t1t2, (194)

(z0 + z1 + z2)(z0z1 + z1z2 + z2z0) = Bz0z1z2, (195)

(t0t1z2 + t1t2z0 + t2t0z1)(z0z1t2 + z1z2t0 + z2z0t1) = Ct0t1t2z0z1z2, (196)

(t0 + t1 + t2)(z0 + z1 + z2) =
α

C
(t0z0 + t1z1 + t2z2), (197)

(z0z1 + z1z2 + z2z0)(t0t1 + t1t2 + t2t0) =
β

C
(z0z1t0t1 + z1z2t1t2 + z2z0t2t0). (198)

Under our assumption we can omit the equation (196). We have to compute a intersection number of divisors
(194),(195),(197) and (198). After computing we have to except the points at the divisors t0t1t2 = 0 and
z0z1z2 = 0. For simplicity, denote by α′ and β′ the expressions α

C and β
C respectively.

Firstly, let us study equation (194). Consider the rational map:

p : P2
t 99K P1,

defined by correspondence: p : (t0 : t1 : t2) 7→ ((t0 + t1 + t2)(t0t1 + t1t2 + t2t0) : t0t1t2). Consider the
surface E ⊂ P2

t × P1 which is a closure of graph of the morphism p. This surface is called Beauville elliptic
family (cf. [?]). We have the natural projection: E → P1. This projection has 6 sections defined by points
F1(1 : 0 : 0), F2(0 : 1 : 0), F3(0 : 0 : 1), G1(0 : −1 : 1), G2(1 : 0 : −1), G3(1 : −1 : 0). It is well-known that
fiber EA, A ∈ P1 is an elliptic curve, iff A 6= (0 : 1), (1 : 1), (9 : 1), (1 : 0). Analogously, second equation defines

elliptic curve EB . Intersection of EA ∩ {t0t1t2 = 0} is a divisor 2
∑3
i=1 Fi +

∑3
i=1Gi. Denote by ∼L the linear

equivalence of divisors. Let us formulate some property of points Fi, Gi, i = 1, 2, 3.

Lemma 69. Assume A 6= (0 : 1), (1 : 1), (9 : 1), (1 : 0). Consider elliptic curve EA. Then we have the following
relations for points Fi;Gi, i = 1, 2, 3:

G1 +G2 +G3 ∼L 3Gi, i = 1, 2, 3.

Fi + Fj ∼L Gi +Gj , i, j = 1, 2, 3,

2Fi ∼L 2Gi, i = 1, 2, 3,

Proof. Consider the intersection of line given by equation (A−1)t0−t1−t2 = 0 and EA. It can be shown in usual
way that intersection is triple point G1. Analogously, Gi, i = 1, 2, 3 are flex points. Therefore, 3Gi ∼L 3Gj .
Points G1, G2 and G3 lie on the line t0 + t1 + t2 = 0. Hence, G1 +G2 +G3 ∼L 3Gi. Further, points F1, F2 and
G3 lie on the line t2 = 0. Thus, F1 + F2 +G3 ∼L 3Gi.

It is well known that for fixed point P ∈ EA elements X − P,X ∈ EA form the group Pic0(EA). Consider
elliptic curve EA ⊂ P2. As we know, there is an usual group law on the EA. Recall that usual group law on the
plane elliptic curve is defined by flex point. It is easy that flex points of EA are Gi, i = 1, 2, 3. Without loss
of generality, let us choose the point G1. Map EA → Pic0(EA) defined by correspondence: X 7→ X −G1 is an
isomorphism of the groups. From relations, we get that elements 0, G2−G1, G3−G1, F1−G1, F2−G1, F3−G1

form the group Z6. It is easy that F1 −G1 is element of second order, G2 −G1, G3 −G1 are elements of third
order, F2 −G1, F3 −G1 are elements of sixth order. It is well known that Beauville family

(t0 + t1 + t2)(t0t1 + t0t2 + t1t2) = At0t1t2

is the family of the elliptic curves with fixed structure of sixth order (cf. [?]).
Further, let us express the natural action of group S3 on the elliptic curve of EA in terms of automorphisms of

the curve. It can be shown in usual way that permutation of x0 and x1 is the automorphism: P 7→ 2F1−P, P ∈
EA, cyclic permutation (0, 1, 2) : x0 7→ x1 7→ x2 7→ x0 is the automorphism: P 7→ P + G2 − G1, P ∈ EA. Also,
map ς : xi 7→ 1

xi
, i = 0, 1, 2 is the automorphism: ς : P 7→ P + F1 −G1.
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If A,B 6= 0, 1, 9,∞ first and second equation define the product of elliptic curves EA × EB . Equations
(197), (198) define divisors D1,α′ , D2,β′ ⊂ EA × EB respectively. Recall that product of elliptic curves EA × EB
has divisors: EA × pt and pt × EB which are not numerically equivalent. These divisors are called vertical
and horizontal respectively. We will say that divisor D of EA × EB has type (a, b) if D · (pt × EB) = a and
D · (EA × pt) = b. We obtain that D1,α′ is divisor of type (3,3), D2,β′ is divisor of type (6,6).

Lemma 70. For any α′, β′ ∈ P1 divisor D1,α′ is linear equivalent to 3G1 × EB + EA × 3G1, Divisor D2,β′ of
EA × EB is reducible and we have the following identity:

D2,β′ = D′2,β′ +

3∑
i=1

Fi × EB +

3∑
i=1

EA × Fi. (199)

Thus, for any α′, β′ ∈ P1 divisors D1,α′ and D′2,β′ are not linear equivalent, in particular, are not equal.

Proof. First statement is trivial. Consider the divisor D2,β′ of EA × EB defined by (198). It is easy that

EA × Fi, i = 1, 2, 3 and Fi × EB are components of D2,β′ . Thus, D2,β′ = D′2,β′ +
∑3
i=1 Fi × EB +

∑3
i=1 EA × Fi.

Clearly, divisors D1,α′ and D2,β′ are linear equivalent to 3G1 × EB + EA × 3G1 and 6G1 × EB + EA × 6G1

respectively. Using lemma 69, we get the following linear equivalences of divisors:

D′2,β′ ∼L (F1 + F2 + F3)× EB + EA × (F1 + F2 + F3) � 3G1 × EB + EA × 3G1

Consider morphism ς×2 = ς × ς : EA × EB → EA × EB . It is easy to see that ς × ς transforms linear system
of divisors {D1,α′}α′∈P1 into linear system {D2,β′}β′∈P1 .

Lemma 71. For general A,B, α, β divisors D1,α′ and D2,β′ are irreducible.

Proof. Using transformation ς×2, it is enough to prove that D1,α′ is an irreducible for general α′. Consider
linear system of divisors {D1,α′}α′∈P1 . By theorem of Bertini, general divisor of this linear system is smooth
outside of base locus. Let us compute the base locus of the system. It is given by system of the equations:
(t0 + t1 + t2)(z0 + z1 + z2) = 0 and t0z0 + t1z1 + t2z2 = 0 in the variety EA × EB . There are 6 points:
(1 : −1 : 0)× (0 : 0 : 1), (1 : 0 : −1)× (0 : 1 : 0), (0 : 1 : −1)× (1 : 0 : 0), (0 : 0 : 1)× (1 : −1 : 0), (0 : 1 : 0)× (1 : 0 :
−1), (1 : 0 : 0)× (0 : 1 : −1), 6 points: (1 : −1 : 0)× (1 : 1 : w), (1 : 0 : −1)× (1 : w; 1), (0 : 1 : −1)× (w : 1 : 1),
where w satisfy to relation (2w + 1)(w + 2) = Bw and 6 points (1 : 1 : v) × (1 : −1 : 0), (1 : v : 1) × (1 :
0 : −1), (v : 1 : 1) × (0 : 1 : −1), where v satisfy to relation: (2u + 1)(u + 2) = Au. Consider the point
(1 : 0 : 0) × (0 : 1 : −1). Let us prove that general divisor D1,α′ is smooth in this point. For this purpose, let
us consider the affine coordinate chart V = F 4

x1,x2,y0,y2
, where x1 = t1

t0
, x2 = t2

t0
, y0 = z0

z1
, y2 = z2

z1
. Consider the

intersection EA × EB ∩ V . Then divisor D1,α′ in this affine chart is given by the system of the equations:

(1 + x1 + x2)(x1 + x2 + x1x2) = Ax1x2,

(y0 + 1 + y2)(y0 + y2 + y0y2) = By0y2,

(1 + x1 + x2)(y0 + 1 + y2) = α′(y0 + x1 + x2y2).

One can calculate the matrix of the jacobian of this system in the point (0, 0)× (0,−1): 1 1 0 0
0 0 B − 1 −1
−α′ α′ 1− α′ 1

 (200)

It is easy that for general B,α′ rank of this matrix is 3. Analogously, one can consider another points. Hence,
the general divisor D1,α′ is smooth, and hence, irreducible. Also, divisor D2,β′ is irreducible as transform of
D1,α.

Corollary 72. Morphism pr is dominant. For general point P fiber pr−1(P ) consists of finite set of points,
moreover |pr−1(P )| ≤ 12.

Proof. Actually, we have that D1,α′ ·D2,β′ = 18 and we have 6 common points in the ”infinite” part.
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7.5 Varieties Y and its quotient Y.

In this subsection we will study morphism Θ : Y → U and morphism η : Y → U .

Proposition 73. Morphism Θ : Y → U is a fibration of curves of genus 4.

Proof. Fix a general point u = (u1, u2, u3). Fiber Yu is defined by system of equations:

a(1,2) + a(1,3) + a(2,3) = u1,

a(1,2,3) + a(1,3,2) = u2,

(a(1,2) − 1)(a(1,3) − 1)(a(2,3) − 1) = u3,

a(1,2,3)a(1,3,2) = a(1,2)a(1,3)a(2,3).

Let us compactify these equations in the following way: affine space will be considered as open dense
subvariety of P5. Thus, first two equations define 3-dimensional linear subspace L of P5. Third and second
equations define a 2-dimensional subspace V of H0(P5,O(3)), i.e. pencil of cubics. These pencil has a singular
element which is a union of linear space and quadric Q. Actually, we can express this quadric in terms of local
coordinates:

Q : a(1,2,3)a(1,3,2) − a(1,2)a(1,3) − a(1,2)a(2,3) − a(1,3)a(2,3) + u1 − 1 = u3. (201)

Consider projective space P5 with homogenous coordinates (z0 : z1 : z2 : z3 : z4 : z5). For simplicity, let us
change the variables in the following manner: a(1,2,3) = z1

z0
, a(1,3,2) = z2

z0
, a(1,2) = z3

z0
, a(1,3) = z4

z0
, a(2,3) = z5

z0
.

Thus, the we get the following quadric Q:

z1z2 − z3z4 − z3z5 − z4z5 − (u1 − 1− u3)z2
0 = 0 (202)

and cubic C:
z0z1z2 = z3z4z5 (203)

Let us prove some properties of the intersection of general quadric and cubic:

Lemma 74. For general u ∈ U intersection Q, C and 3-dimensional linear space L is non-singular.

Proof. Space L is given by equations:

z3 + z4 + z5 − u1z0 = 0, z1 + z2 − u2z0 = 0 (204)

Consider matrix of the jacobian of the equations defining intersection of Q, C and L:

J =


−u1 0 0 1 1 1
−u2 1 1 0 0 0
−z1z2 −z0z2 −z0z1 z4z5 z3z5 z3z4

−2(u1 − 1− u3)z0 −z2 −z1 z4 + z5 z3 + z5 z3 + z4

 (205)

Rows of J correspond to variables z0, ..., z5 respectively. It can be shown in usual way that statement of the
lemma is equivalent to condition rankJ = 4 for general u ∈ U . We will denote by Ji1,i2,i3,i4 the submatrix of J
with rows with numbers i1, i2, i3, i4 ∈ {1, ..., 6}, i1 < i2 < i3 < i4. Consider the varieties Vi1,i2,i3,i4 defined by
equations detJi1,i2,i3,i4 = 0, i1, i2, i3, i4 ∈ {1, ..., 6} respectively. It is easy that singularities of the intersection
C ∩ Q ∩ L are in the

⋂
(i1,i2,i3,i4),1≤i1<i2<i3<i4≤6 Vi1,i2,i3,i4 .

Further, one can show that detJ3,4,5,6 = detJ2,4,5,6 = (z3 − z4)(z4 − z5)(z5 − z3),detJ2,3,4,5 =
(z4−z3)(z5−z0)(z1−z2),detJ2,3,4,6 = (z5−z3)(z4−z0)(z1−z2),detJ2,3,5,6 = (z5−z4)(z3−z0)(z1−z2). It is easy
that each of the varieties Vi1,i2,i3,i4 is a union of the three projective hyperspaces. There are several cases. Con-
sider the case z5 = z4, z1 = z2. In this situation we have the line l: z1 = u2z0

2 , z2 = u2

z0
, z3 = −2z5 +u1z0, z4 = z5.

And we have to consider the intersection of this line with quadric Q and cubic C. One can show that the inter-
section of the line l, quadric Q and cubic C is empty for general u1, u2, u3. One can solve the rest analogously.
Lemma is proved
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Analogous to lemma, standard arguments show us that intersection of 3-dimensional space and cubic is
non-singular 2-dimensional cubic. Also, intersection of 3-dimensional space and quadric is non-singular quadric.
Thus, we get the intersection of cubic and quadric in 3-dimensional space. Using lemma and generality of u, we
get that this intersection is complete and non-singular. Thus, cubic defines non-singular divisor of type (3, 3)
on quadric Q, i.e. curve of genus 4.

Further, we will study morphism η : Y → U . Action of S3 on the ring O(Y ) is defined as follows. Direct
calculations show us that permutations (1, 2) and (1, 2, 3) act on the ring O(Y ) by formulas:

(1, 2) : a(1,2) 7→ a(1,2), a(1,3) ↔ a(2,3), a(1,2,3) ↔ a(1,3,2) (206)

and
(1, 2, 3) : a(1,2) 7→ a(2,3), a(2,3) 7→ a(1,3), a(1,3) 7→ a(1,2), a(1,2,3) 7→ a(1,2,3), a(1,3,2) 7→ a(1,3,2) (207)

We will study O(Y )S3 the ring of S3-invariants. Using Noether’s theorem, this ring is finitely gener-
ated. Direct calculations show us that we can choose generators of this ring in following way: u1, u2, u3, v =
(a(1,2,3) − a(1,3,2))

2, w = (a(1,2) − a(2,3))(a(2,3) − a(1,3))(a(1,3) − a(1,2))(a(1,2,3) − a(1,3,2)). There is a relation:

−16w2 + v4 + c1v
3 + c2v

2 + c3v = 0. (208)

Here, ci ∈ F [u1, u2, u3], i = 1, 2, 3.
Using computing system Maple, we get the following formulas:

c1 = 6u1 + u2
1 + 12u3 − 3u2

2 − 15, (209)

c2 = 96u3 + 48u2
3 − 24u1 − 12u2

2u1 + 3u4
2 − 24u2

2u3 − 24u3u1 − 16u2
1 + 8u3

1 + 30u2
2 + 8u3u

2
1 − 2u2

2u
2
1 + 48, (210)

c3 = 64 + 192u2
3 − 48u2

2 − 384u3u1 − 32u3u
3
1 − u6

2 + 24u2
2u1 + 64u3

3 − 96u2
2u3 + 6u4

2u1 + 208u2
1 − 8u3

1u
2
2− (211)

48u2
3u

2
2 + u4

2u
2
1 + 12u3u

4
2 + 224u3u

2
1 − 8u3u

2
1u

2
2 − 96u3

1 + 16u2
3u

2
1 + 24u3u1u

2
2 + 16u2

2u
2
1−

192u2
3u1 − 192u1 + 192u3 + 16u4

1 − 15u4
2.

Clearly, the affine curve (208) is a non-singular for general u ∈ U . Fix general point u ∈ U . Also, let us
note that after standard compactification of fibre Yu, we get the quartic curve in P2. This curve is singular at
infinity. For simplicity, let us construct birational morphism Y → Ỹ given by the following formula:

ui 7→ ui, i = 1, 2, 3 v 7→ v, w 7→ t =
w

v
=

(a(1,2) − a(2,3))(a(2,3) − a(1,3))(a(1,3) − a(1,2))

(a(1,2,3) − a(1,3,2))
. (212)

It easy that variety Ỹ is given by equation:

−16t2v + v3 + c1v
2 + c2v + c3 = 0, (213)

where ci are given by formulas (209),(210),(211). It is clear that this birational isomorphism is compatible with
S3 - action.

Also, we can transform Ỹ by the following substitution:

v1 = ABC =
u2

2 − v
4

.

We obtain the following form of the Ỹ given by formula:

(−u2
2 + 4v1)w2 − 4v3

1 + c′1v
2
1 + c′2v1 + c′3 = 0, (214)

where
c′1 = −15 + u2

1 + 12u3 + 6u1, (215)
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c′2 = 4u2
1 − 24u3 + 6u1 − 12u2

3 − 12− 2u3
1 + 6u3u1 − 2u3u

2
1, (216)

c′3 = 4(u3 − u1 +
u2

1

4
+ 1)(1 + u3 − u1)2. (217)

Let us note the following symmetry γ of the variety Y defined by correspondences: γ : a(i,j) 7→ a(i,j), i, j =
1, 2, 3 and γ : a(1,2,3) 7→ −a(1,3,2), a(1,3,2) 7→ −a(1,2,3). It is easy that action of γ is compatible with S3-action.
Thus, there is an action of γ on the Y defined by rule: γ : u1 7→ u1, u2 7→ −u2, u3 7→ u3, w 7→ w, v 7→ v, and
analogously, we can define action of γ on the Ỹ. Consider natural projection: η : Ỹ → U . It is easy that we can
define action of the involution γ on U compatible with action on Ỹ.

Proposition 75. Morphism: η : Ỹ → U is elliptic fibration. Involution γ provides the isomorphism of fibers
Ỹu and Ỹγ(u) for u ∈ U .

Proof. Fix general point u ∈ U . Consider fiber of the variety Ỹ over u given by formula (214). Consider natural

compactification of the curve Ỹu in the projective plane P2 with homogenous coordinates (t0 : t1 : t2). Put
w = t1

t0
, v1 = t2

t0
. Thus, we get the following cubic curve:

(4t2 − u2
2t0)t21 = −4t32 + c′1t

2
2t0 + c′2t2t

2
0 + c′3t

3
0. (218)

Studying natural projection: P2 → P1
(t0:t2), we obtain that this projection defines the covering of degree 2 of

compactification Ỹu onto P1 with ramification. One can check that for general point u ramification divisor has
degree 4. Using non-singularity and degree of ramification divisor, we get that cubic curve is elliptic. It is easy
that automorphism γ preserves the curve.

7.6 Degree of morphism pr, function fields F (X)S3 and F (X ).

In this section we will study birational properties of varieties X/S3 and X . In particular, we will study
ramification divisor of morphism φ.

Expressing the variable a(1,2,3) from the equation a(1,2)a(2,3)a(1,3) = a(1,2,3)a(1,3,2), we get the following
isomorphism of function fields:

F (Y ) ∼= F (a(1,2), a(1,3), a(1,2,3), a(1,3,2)) (219)

and
F (Y) ∼= F (u1, u2, u3, v, t; 16t2v − v3 − c1v2 − c2v − c3 = 0) (220)

where ci,∈ F [u1, u2, u3], i = 1, 2, 3 and v, t are defined by (212). It is easy that F (X) = F (x1, x2, y1, y2).
Recall that general fiber of pr is less or equal 12. Thus, we have for function fields the following inequality:
|F (X) : F (Y )| ≤ 12.

Fix a general point (A = a(1,2), B = a(1,3), C = a(2,3), α = a(1,2,3), β = a(1,3,2). Let us study a fibers of the
morphisms φ and pr over general point for obtaining of ramification divisors. For this purpose, consider the
following system of equations (194), (195), (197), (198). Recall that first and second equation define elliptic
curves EA and EB respectively.

For general B, αC ,
β
C system of equations (195), (197), (198) defines a curve S. We can consider this curve

as intersection of two divisors D1 and D2 into 3-dimensional variety EB × P2. We will study the intersection of
curve S and curve EA. For this purpose, let us project this curve onto P2. Denote this projection map by πP2 .

It can be shown in usual way that projection of πP2 is a S3 - equivariant morphism. Actually, (t0 : t1 : t2) ∈
πP2(C) iff σ(t0 : t1 : t2) ∈ πP2(S) for any permutation σ ∈ S3. Consider elementary symmetric polynomials:
σ1 = t0 + t1 + t2, σ2 = t0t1 + t0t2 + t1t2, σ3 = t0t1t2 We can choose the coordinate of quotient P2

t/S3 as follows
(s1 = σ3

1 : s2 = σ1σ2 : s3 = σ3). It is clear that curve EA transforms into curve given by formula s2 = As3.
Using Maple, we can check that curve πP2(S) transforms into curve S′ given by equation:

a1s1s
3
3 + a2s

3
2s3 + a3s1s

3
2 + a4s

2
1s2s3 + a5s1s

2
2s3 + a6s

2
1s

2
3 + a7s1s2s

2
3 + a8s

4
2 = 0, (221)

with ai ∈ C[A,B,C, α, β,ABC = αβ]:

a1 = −B2α3β3 + 9β3α3B,
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a2 = −B2C2β3α+ 6BC2β3α+B2C3β3 + 3α3β3 + 9Cβ3α2 − 2BCβ3α2,

a3 = BC3β2α−BC4βα−B2C6 − C2α2β2 +BC3α2β +B2C5β −B2C4αβ +B2C5α,

a4 = −2BC2β2α2 + Cβ3α2 −B2C4α2 − 2BC3α2β + 3C2α2β2 +B2C3α2β,

a5 = −9C2α2β2 − 3BC3β2α+ 14BC2β2α2 +BCβ3α2 − α3β3 − 6Cα3β2 − 2BC2α3β

−3BC3α2β − 6Cβ3α2 +BCα3β2 + 9BC4βα−B2C2α2β2 − 2BC2β3α,

a6 = 3α3β3 + 6BC2α3β −B2C2α3β + 9Cα3β2 − 2BCα3β2 +B2C3α3,

a7 = −9α3β3 +B2Cβ3α2 − 3BCα3β2 − 3BCβ3α2 +B2Cα3β2−

18BC2β2α2 −Bβ3α3,

a8 = −B2C4β2 − 2BC2β2α2 +B2C3αβ2 + Cα3β2 + 3C2α2β2 − 2BC3β2α.

Thus, consider the fiber of φ over general point (A,B,C, α, β) of variety Y . This fiber is the intersection of
curves: s2 = As3 and πP2(S). Omitting point (1 : 0 : 0), we get the following equation:

s2
1(Aa4 + a6) + s1s3(a1 +Aa7 +A2a5 +A3a3) + s2

3(A3a2 +A4a8) = 0. (222)

It can be shown that intersection of s2 = As3 and S′ is 2. Thus, intersection of EA and πP2(S) is 12. Therefore,
we have proved the following proposition:

Proposition 76. Degrees of the morphisms pr and φ are 12 and 2 respectively.

Recall that we have the intersection index of D1,α′ and D′2,β′ is 18. Thus, for general point P there are 6
points of D1,α′ ∩D′1,β′ in the ”infinite” part: t0t1t2 = 0, z0z1z2 = 0. One can calculate the intersection of D1,α

with t0t1t2 = 0 and with z0z1z2 = 0. We will study the points up to common permutation of ti and zi There
are several points:

• (1 : 0 : 0)× (0 : −1 : 1)

• (1 : 0 : 0) × (1 : z′ : z′′), where z′, z′′ are different roots of the equation:
α′(α′ − 1)− (α′ −A)(α′ − 1)z + (α′ −A)z2 = 0

• (1 : −1 : 0)× (0 : 0 : 1)

• (1 : −1 : 0)× (1 : 1 : z), where z is a root of the equation: (2 + z)(2z + 1) = Az

• (1 : z′ : z′′) × (1 : 0 : 0), where z′, z′′ are different roots of the equation:
α′(α′ − 1)− (α′ −B)(α′ − 1)z + (α′ −B)z2 = 0

• (1 : 1 : z)× (1 : −1 : 0), where z is a root of the equation: (2 + z)(2z + 1) = Bz

Let us apply the involution ς×2 to divisor D1,β′ . It is easy that ς×2 preserves the divisors t0t1t2 = 0 and
z0z1z2 = 0. One can see that for general A,B, α′, β′ there are 6 common points (1 : −1 : 0)× (0 : 0 : 1), (1 : 0 :
−1)× (0 : 1 : 0), (0 : 1 : −1)× (1 : 0 : 0), (1 : 0 : 0)× (0 : 1 : −1), (0 : 1 : 0)× (1 : 0 : −1), (0 : 0 : 1)× (1 : −1 : 0).
Using proposition 76, we get that intersection indexes of these 6 common points are 1 for general (A,B, α′, β′) ∈
Y .

Remark. As we know, morphism pr is dominant. Note that pr is not surjective. For instance, one can
check that if −Aβ′+AB−3α′β′−α′B = 0, then intersection indexes of the 6 common points are 3, and divisors
D1,α′ and D′1,β′ are irreducible. Thus, for point P0 ∈ {−Aβ′ + AB − 3α′β′ − α′B = 0} the fiber pr−1(P0) is
empty.

Further, let us study function field of the varieties X, Y , X , Y. We obtain that F (X) = F (Y, x1, x2),
where x1, x2 satisfy to (1 + x1 + x2)(1 + 1

x1
+ 1

x2
) = A and equation (222) expressed in the variables x1, x2.

Thus, variables y1, y2 are rational functions over a(1,2), a(1,3), a(1,2,3), a(1,3,2) and x1, x2. One can show that
F (X) = F (Y, x1), where x1 satisfy to polynomial relation of degree 12 over a(1,2), a(1,3), a(1,2,3), a(1,3,2).
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As we know, |F (X)S3 : F (Y )| = 2, i.e. F (X)S3 is a quadratic extension of F (Y ). Put h = s1/s3. h can be
described in terms of xi’s as follows:

h =
(1 + x1 + x2)3

x1x2
. (223)

We have the relation:

h2(Aa4 + a6) + h(a1 +Aa7 +A2a5 +A3a3) +A3a2 +A4a8 = 0. (224)

Using the isomorphism (219), we obtain the isomorphism of function field

F (X)S3 = F (x1, x2, y1, y2)S3 ∼= F (a(1,2), a(1,3), a(1,2,3), a(1,3,2), h),

where a(1,2), a(1,3), a(1,2,3), a(1,3,2), h are described in terms of x1, x2, y1, y2 by formulas: (186),(189),(190),(223)
and h satisfy to relation (224). Denote by d the discriminant of (224). Evidently, F (x1, x2, y1, y2)S3 ∼=
F (a(1,2), a(1,3), a(1,2,3), a(1,3,2),

√
d). Of course, the choice of d is non-unique. Direct calculations show us that d

can be chosen S3 × S3 - invariant. Moreover, using Maple, we can choose d as element of F [u1, u2, u3]:

d = 325− 27u2
2 + 2u3u

2
1 +u2

2u
2
1 + 138u2

1− 380u1 + 30u2 + 326u3− 56u3u1 +u2
3− 2u3u1u2− 2u1u

2
2− 4u3

2+ (225)

26u2u
2
1 + 30u3u2 − 2u3

1u2 − 86u1u2 − 20u3
1 + u4

1.

Thus, we have proved the following proposition:

Proposition 77. • We have the following isomorphism for function fields

F (X)S3 ∼= F (a(1,2), a(1,3), a(1,2,3), a(1,3,2),
√
d) (226)

where d is given by (225),

• There exists the isomorphism of function fields:

F (X)S3×S3 = F (X ) ∼= F (u1, u2, u3, t, v,
√
d; 16t2v − v3 − c1v2 − c2v − c3 = 0) (227)

Using this proposition, we obtain that fiber Xu over general point u ∈ U is a union of two isomorphic elliptic
curves C1 ∪ C2. This curves correspond to different values

√
d. Also, it can be shown that the fiber Xu over

general point u ∈ U is a union of two isomorphic curves of genus 37. Let V be the hypersurface in the affine
space F 4

(u1,u2,u3,s)
defined by equation: s2 = d, where d is defined by formula (225). There exists a morphism

X → V, which fibers are connected, and natural projection V → U , which is a covering of degree 2.

Corollary 78. Consider morphism:
Φ = Θ ◦ pr : X → U .

This morphism has the following Stein factorization: X → V → U , i.e. fibers of the maps X → V and V → U
are connected and discrete respectively.

Analogously, we have quite similar Stein decomposition for morphism Θ ◦ pr ◦ τ .

7.7 Involutions on the X .

In this subsection we will study involutions on the variety X and their properties.
Recall that we have the involution τ : X → X given by rule: τ : pi ↔ qi, i = 1, 2, 3 and there is a well-defined

involution τ : X → X . We have the birational involutions j : X/S3 → X/S3 defined as automorphisms of the
coverings φ of degree 2. Also, recall that there is well-defined maps j : X → X .

Consider the involution κ : X → X defined by formula: xi 7→ 1
xi
, yi 7→ 1

yi
, i = 1, 2. It can be shown in usual

way that we can define involution κ : X → X such that the following diagram:

X
κ //

��

X

��
X κ // X
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is commutative.
Let us study the relations between involutions j, κ, τ on the X . As we know,

F (X ) ∼= F (u1, u2, u3, v, t,
√
d; 16t2v − v3 − c1v2 − c2v − c3 = 0)

Proposition 79. Consider the involutions τ, j, κ acting on the variety X . τ ◦ κ = κ ◦ τ . Let us express action
of the involutions in coordinates:

τ(ui) = ui, j(ui) = ui, κ(ui) = ui, i = 1, 2, 3, (228)

τ(
√
d) = −

√
d, (229)

j(v) = v, j(t) = t, j(
√
d) = −

√
d, (230)

κ(t) = −t, κ(v) = v, κ(
√
d) = −

√
d. (231)

Proof. Consider the involutions τ and κ defined on the X. It is easy that they commutes. Thus, τ and
κ commutes as involutions acting on X . Further, let us consider expression of element

√
d in coordinates

x1, x2, y1, y2. One can show that τ(
√
d) = −

√
d, κ(
√
d) = −

√
d. Direct calculations prove the rest of the

statement.

Recall that automorphism of φ ◦ τ is the involution τ ◦ j ◦ τ . Denote by t′, v′ the elements τ(t), τ(v) of the
function field F (X ). It is easy that τ ◦ j ◦ τ(t′) = t′, τ ◦ j ◦ τ(v′) = v′, τ ◦ j ◦ τ(

√
d) = −

√
d.

Proposition 80. Morphism pr12 = (pr, pr ◦ τ) : X → Ỹ ×U Ỹ is a birational immersion, i.e. varieties X and
pr12(X) are birationally isomorphic.

Proof. It is sufficient to prove that the involutions j 6= τ ◦ j ◦ τ . Actually, it means that map (ψ,ψ ◦ τ) : X →
Ỹ ×U Ỹ is a birational immersion and hence, pr12 is. Consider divisor D ⊂ X consisting of points x ∈ X such
that j ◦ κ(x) = x. Also, consider the divisor τ(D) consisting of points such that τ ◦ j ◦ κ(x) ◦ τ = x. Using
commutativity of κ and τ , we get that τ(D) is divisor of the points x satisfying to τ ◦ j ◦ τ ◦ κ(x) = x. Divisors
D and τ(D) are given by equations: t = 0 and t′ = 0 respectively. We can consider divisors D′ and τ(D′) in X
the preimages of D and τ(D) under natural projection X → X respectively. It is easy D and τ(D) are given
by equations:

(1 + x1 + x2)(1 +
1

y1
+

1

y2
)(1 +

y1

x1
+
y2

x2
)− (1 + y1 + y2)(1 +

1

x1
+

1

x2
)(1 +

x1

y1
+
x2

y2
) = 0

and

(1 + x2 + y2)(1 +
1

x1
+

1

y1
)(1 +

x1

x2
+
y1

y2
)− (1 + x1 + y1)(1 +

1

x2
+

1

y2
)(1 +

x2

x1
+
y2

y1
) = 0

respectively. Further, denote by f and g the elements x1

y2
− y2

x1
+ x2y1

x1
− x1

x2y1
+ y2

x2y1
− x2y1

y2
and

x2

y1
− y1

x2
+ x1y2

x2
− x2

y2x1
+ y1

x1y2
− x1y2

y1
respectively. It can be shown in usual way that τ(f) = −f and τ(g) = g.

Also, it is easy that divisors D and τ(D) are given by equation f + g = 0 and −f + g = 0 respectively. Consider
intersection of D and τ(D). It is easy that intersection D ∩ τ(D) is given by f = 0 and g = 0. Using following
expressions for f and g:

f = (
1

y2
− 1

x1
)(
x1

x2
− y1)(x2 −

y2

y1
) = 0, g = (

1

y1
− 1

x2
)(y2 −

y1

x1
)(x1 −

x2

y2
) = 0

we get 9 two-dimensional components of D ∩ τ(D). Thus, j 6= τ ◦ j ◦ τ .
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As we know, τ provides automorphism of function field F (X ). Consider the elements t′ = τ(t), v′ = τ(v).
It is easy that t′, v′ are rational function of variables t, v,

√
d, u1, u2, u3. Proposition 80 shows us that these

functions are non-trivially depends on
√
d.

Fix a general point u = (u1, u2, u3). As we know, fiber of variety X over u = (u1, u2, u3) ∈ U is a union of
isomorphic elliptic curves, i.e. Xu = C1 ∪C2 which are corresponds to

√
d and −

√
d respectively. Denote by E

the fiber Ỹu. Let us identify curves C1 and C2 by means of the involution j. Also, fix a point P ∈ E, let us
denote by (P,

√
d) and (P,−

√
d) the fiber of morphism φ : Xu → Ỹu over point P ∈ Ỹu = E.

Consider morphism j ◦ τ acting on the X . As we know, j ◦ τ(ui) = ui, j ◦ τ(
√
d) =

√
d. Thus, j ◦ τ defines

automorphisms of the curves C1 and C2. Thus, we obtain two automorphisms of the elliptic curve E. As we
know, there are two types of the automorphisms of E:

• shift: P 7→ P + S, P ∈ E for fixed element S ∈ Pic0(E),

• reflection: P 7→ 2R− P, P ∈ E for fixed point R ∈ E.

Let two automorphisms be of second type. Thus,

j ◦ τ : (P,
√
d) 7→ (2R+ − P,

√
d); (P,−

√
d) 7→ (2R− − P,−

√
d)

for some fixed points R+, R− ∈ E. Therefore, j ◦ τ ◦ j ◦ τ is identity morphism. Thus, j = τ ◦ j ◦ τ , and hence,
we get contradiction with proposition 80.

Let one of the automorphisms is of first type, other is of second type. Thus,

j ◦ τ : (P,
√
d) 7→ (2R− P,

√
d); (P,−

√
d) 7→ (P + S,−

√
d)

for some fixed point R ∈ E and fixed element S ∈ Pic0(E). Thus, involution τ is given by formula:

τ : (P,
√
d) 7→ (2R− P,−

√
d); (P,−

√
d) 7→ (P + S,

√
d).

We get contradiction with fact: τ2 = 1. Actually, automorphism

τ2 : (P,
√
d) 7→ (2R− P + S,

√
d); (P,−

√
d) 7→ (2R− P − S,−

√
d)

is not identity element for any R ∈ E and S ∈ Pic0(E).
Thus, two automorphisms are of first type:

j ◦ τ : (P,
√
d) 7→ (P + S1,

√
d); (P,−

√
d) 7→ (P + S2,−

√
d)

for fixed elements S1, S2 ∈ Pic0(E). Further, we get the following formula for automorphism τ :

τ : (P,
√
d) 7→ (P + S1,−

√
d); (P,−

√
d) 7→ (P + S2,

√
d).

Therefore,
τ2 : (P,

√
d) 7→ (P + S1 + S2,

√
d); (P,−

√
d) 7→ (P + S2 + S1,−

√
d).

And hence, S1 + S2 ∼L 0. Denote by S the element S1. Thus, we obtain the following formula for τ :

τ : (P,
√
d) 7→ (P + S,−

√
d); (P,−

√
d) 7→ (P − S,

√
d) (232)

Thus, we have proved the following proposition:

Proposition 81. Consider birational immersion: X → Ỹ ×U Ỹ . Fix a general point u = (u1, u2, u3) ∈ U .

Consider fibers Xu = C1 ∪ C2, Ỹu = E. Curves C1 and C2 are divisors in the E × E. Then C1 and C2 are
divisors of type (P, P + S), P ∈ E and (P, P − S), P ∈ E for some fixed element S ∈ Pic0(E).

Fix point u ∈ U . Thus, there is a point R ∈ E such that S ∼L R − P0, where P0 = (0 : 1 : 0) is inflection
point. From irreducibility X it follows that the point R don’t define the section of fibration Y → U . In
particular, point R depends on point u ∈ U .
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8 Case of graph Γ3,6.

In this section we will study the variety X(3, 6) of 6-dimensional representations of algebra B 1
6
(Γ3,6).

8.1 Previous remarks.

In this subsection we recall the varieties, which we will study and some their properties and results. Also, we
will formulate main results and some ideas of proof.

Let us recall the varieties and their notation:

• X(6, 6) is the variety of the projectors p1, ..., p6; q1, ..., q6 of rank 1 with relations:

pipj = qiqj = 0,

6∑
i=1

qi =

6∑
i=1

pi = 1,Trpiqj =
1

6
.

up to GL6(F ) - conjugacy, i.e. X(6, 6) :=M6B 1
6
(Γ6,6)[1].

• X(3, 6) is the variety of the projectors p1, p2, p3; q1, ..., q6 of rank 1 with relations:

pipj = qiqj = 0,

6∑
i=1

qi = 1,Trpiqj =
1

6

up to GL6(F ) - conjugacy, i.e. X(3, 6) :=M6B 1
6
(Γ3,6)[1].

• X(3, 3) is the variety of the projectors p1, p2, p3; q1, q2, q3 of rank 1 with relations:

pipj = qiqj = 0,Trpiqj =
1

6

up to GL6(F ) - conjugacy, i.e. X(3, 3) :=M6B 1
6
(Γ3,3)[1]. As we know, X(3, 3) ∼= (F ∗)4.

• Y (6) is the variety of projectors P ; q1, ..., q6, where P is the projector of rank 3 and q1, ..., q6 are orthogonal
projectors of rank 1 with relations:

6∑
i=1

qi = 1, qiqj = 0,TrPqi =
1

2
.

up to GL6(F ) - conjugacy, i.e. Y (6) :=M6Ã6( 1
2 )[~1, 3].

• Y (3) is the variety of projectors P ; q1, q2, q3, where P is the projector of rank 3 and q1, q2, q3 are orthogonal
projectors of rank 1 with relations:

qiqj = 0,TrPqi =
1

2
.

up to GL6(F ) - conjugacy, i.e. Y (3) :=M6A3( 1
2 )[~1, 3]

• Y is the variety of projectors P ;Q of rank 3 with relation TrPQ = 3
2

Also we have well-defined action of symmetric groups by permutations of pi and qj . We have the following

actions: group S
(p)
3 acts on X(3, 6) by permutation of pi. Also, we have the actions of S

(p)
3 and S

(q)
3 on X(3, 3)

by permutation of pi and qi respectively. Thus, consider the following quotients:

• variety Z is a quotient of X(3, 6) by action of group S
(p)
3

• variety X is a quotient of X(3, 3) by action of group S
(p)
3 × S(q)

3
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• variety Y(3) is a quotient of Y (3) by action of S3.

Moreover, we have the following natural maps:

• pr1 : X(6, 6)→ X(3, 6) defined by rule: (p1, ..., p6; q1, ..., q6) 7→ (p1, p2, p3; q1, ..., q6),

• pr2 : X(3, 6)→ X(3, 3) defined by rule: (p1, p2, p3; q1, ..., q6) 7→ (p1, p2, p3; q1, q2, q3),

• φ1 : X(3, 6)→ Y (6) defined by rule: (p1, p2, p3; q1, ..., q6) 7→ (p1 + p2 + p3; q1, ..., q6),

• φ2 : X(3, 3)→ Y (3) defined by rule: (p1, p2, p3; q1, q2, q3) 7→ (p1 + p2 + p3; q1, q2, q3),

• ψ1 : Y (6)→ Y (3) defined by rule: (P ; q1, ..., q6) 7→ (P ; q1, q2, q3),

• ψ2 : Y (3)→ Y defined by rule: (P ; q1, q2, q3) 7→ (P ; q1 + q2 + q3).

Further, denote some involutions on the varieties:

• involutions σ(p) : pi ↔ pi+3, i = 1, 2, 3; qj ↔ qj , j = 1, ..., 6, σ(q) : qj ↔ qj+3, j = 1, 2, 3; pi ↔ pi, i = 1, ..., 6,
τ : pi ↔ qi, i = 1, ..., 6 act on X(6, 6). It is easy that σ(q) = τ ◦ σ(p) ◦ τ .

• Also, we can define action of σ(q) on X(3, 6).

• We can define action of τ on X(3, 3),

• involutions σP : P 7→ 1−P, qj ↔ qj , j = 1, ..., 6 acts on Y (6). Denote this involution by σ
(6)
P . Also we can

define action of σ(q) on Y (6).

• We can define action of σ
(3)
P on Y (3) by formula: P 7→ 1− P . It is easy that σ

(3)
P ◦ ψ = ψ ◦ σ(6)

P .

• Involutions τ : P ↔ Q, σP : P 7→ 1−P,Q 7→ Q and σQ : P 7→ P,Q 7→ 1−Q. One can check that σP = σQ
as involution on Y . We will denote this involution by σ.

It is trivial that action of σ(q) on X(6, 6) and X(3, 6) commute with map pr1. Analogously, we have the
same properties in another cases.

Also, we have the following commutative diagrams:

•

X(6, 6)

pr1

��

pr1◦σ(p)

// X(3, 6)

σ
(6)
P ◦φ1

��
X(3, 6)

φ1 // Y (6)

. (233)

By theorem ??, variety X(6, 6) is birational isomorphic to fibred product X(3, 6)×Y (6) X(3, 6).

•

X(3, 6)

pr2

��

pr2◦σ(q)

// X(3, 3)

σ
(3)
P ◦φ2◦τ
��

X(3, 3)
φ2◦τ // Y (3)

(234)

By theorem ??, varietyX(3, 6) is birational isomorphic to fibred product X̃ = X(3, 3)×Y (3)X(3, 3). Denote

by ζ the birational isomorphism: X(3, 6)→ X̃. Also, we have the following commutative diagram:

X̃
p′′ //

p′

��

X(3, 3)

σ
(3)
P ◦φ2◦τ
��

X(3, 3)
φ2◦τ // Y (3)

(235)
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where p′, p′′ are natural projection. This commutative diagram is a fibred product. There is an action of
involution σ(q) given by following formula:

σ(q)(x1, x2) = (x2, x1),

where (x1, x2) ∈ X̃. It is trivial that p′′ = p′ ◦ σ(q).

•

Y (6)

ψ1

��

σ(q)◦ψ1// Y (3)

σQ◦ψ2

��
Y (3)

ψ2 // Y

(236)

We have the well-defined map: ψ : Y (6)→ Y (3)×Y Y (3).

Further, let us introduce the following varieties and morphisms:

• there is an action of S
(p)
3 on X̃. Denote by Z̃ the quotient X̃/S

(p)
3 . It is trivial that variety Z and Z̃

are birationally isomorphic. Denote by ζ̃ the birational isomorphism: Z → Z̃. Also, note the following
isomorphism:

Z̃ ∼= X(3, 3)/S
(p)
3 ×Y(3) X(3, 3)/S

(p)
3 (237)

• there is a natural action of group G = S3 × S3 × S3 by permutations of pi, i = 1, 2, 3, qi, i = 1, 2, 3 and
qi, i = 4, 5, 6 on X̃. Denote the quotient X̃/G by X̃ . It is easy that X̃ is a fibred product X ×Y(3) X .

Also, we have the morphism: Φ′ : X̃ → Y(3)×Y Y(3).

Moreover, we have the following natural morphisms:

• morphism φ1 : X(3, 6)→ Y (6) has the following decomposition:

X(3, 6)
π // Z

µ // Y (6), (238)

where π is a natural projection, µ is a natural morphism.

• also morphism Φ : X̃ → Y (3)×Y Y (3) has the following decomposition:

X̃
π̃ // Z̃

µ̃ // Y (3)×Y Y (3), (239)

where π̃ is a natural projection, µ̃ is a natural morphism.

It is easy that we have the following commutative diagram:

X(3, 6)
π //

ζ

��

Z
µ //

ζ̃

��

Y (6)

ψ

��
X̃

π̃ // Z̃
µ̃ // Y (3)×Y Y (3)

(240)

Further, note the following relation between Z̃ and X̃ . Using isomorphism (237), we can define morphism:

Z̃ → X̃ by natural factorization of action of group S3 × S3. These two symmetric group permute qi, i = 1, 2, 3
and qi, i = 4, 5, 6 respectively. Analogously, we get the morphism: Y (3) ×Y Y (3) → Y(3) ×Y Y(3). One can
show that the following diagram:

Z̃
µ̃ //

π×π
��

Y (3)×Y Y (3)

π×π
��

X̃
Φ′ // Y(3)×Y Y(3)

(241)
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is commutative.
Consider the morphism Φ. It is trivial that morphism Φ : X̃ → Y (3) ×Y Y (3) is a composition of natural

projections and φ2. Namely, we have the following commutative diagram:

X̃
p′ //

p′◦σ(q)

��

X(3, 3)
φ2 // Y (3)

ψ2

��

X(3, 3)

φ2

��
Y (3)

σ◦ψ2 // Y

(242)

8.2 Previous properties of the variety X(3, 6).

In this subsection we will formulate previous properties of X(3, 6), which we will use for proof of its irreducibility.
First of all, let us make note about dimension of any irreducible component of X(3, 6). As we know from

(generalized Hadamard matrices)?? variety X(3, 6) is subvariety of (F ∗)10 given by equations:

1 + z1 + ...+ z5 = 0, 1 + t1 + ...+ t5 = 0, (243)

1 +
1

z1
+ ...+

1

z5
= 0, 1 +

1

t1
+ ...+

1

t5
= 0, (244)

1 +
z1

t1
+ ...+

z5

t5
= 0, 1 +

t1
z1

+ ...+
t5
z5

= 0, (245)

where ti, zi, i = 1, ..., 5 are coordinates in (F ∗)10. There is a description of these coordinates as traces of elements
p1q1piqj , i = 2, 3, j = 2, ..., 6. Therefore, dimension of any irreducible component of X(3, 6) is more or equal 4.

Note that dimFX(3, 6) = 4 follows from birationality of X(3, 6) and X̃. Actually, map φ2 : X(3, 3)→ Y (3)

is dominant and finite in general point. Thus, we get that dimF X̃ = 4.
Firstly, let us prove the following:

Proposition 82. Image of any irreducible component of X̃ under p′ (and, hence under p′′) is dense in X(3, 3).

Proof. Evidently, for any irreducible component p′(X̃) and p′′(X̃) are both dense in X(3, 3) or both subvarieties

in X(3, 3). Consider irreducible component X̃1 of X̃. Assume that p′(X̃1) and p′′(X̃1) are both subvarieties in

X(3, 3). Then dimension of fibers of the restrictions p′ and p′′ on X̃1 are more than 0. Consider commutative
diagram:

X̃1

p′◦σ(q)

//

p′′

��

p′(X̃1)

σP ◦φ2◦τ

��
p′(X̃1)

φ2◦τ // Y1,

(246)

where variety Y1 = φ2 ◦ τ ◦ p′(X̃1). Then for general point y ∈ Y1 fiber (φ2 ◦ τ)−1(y) has dimension more than
0. We studied properties of morphism φ2 in the section ??. As we know, dimension of fiber (φ2 ◦ τ)−1(y) is not

more than 1. Thus, fibers of the maps pr′ and pr′′ have dimension 1. Because of dimF X̃1 = 4, we obtain that
dimFY1 = 2. Consider the subvariety S = {y ∈ Y (3)|dimF (φ2)−1(y) = 1} of the Y (3). Therefore, Y1 ⊆ S. Let
us prove the following lemma, contradicting with dimFY1 = 2.

Lemma 83. dimFS = 1.

Proof of the lemma. As we know, map φ2 is given by formulas (186), (187), (188), (189), (190). Consider
point y = (A = a(1,2), B = a(1,3), C = a(2,3), α = a(1,2,3), β = a(1,3,2)) ∈ S. Using results and notation of section
??, we have several cases:
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• all curves EA, EB , EC are elliptic,

• only two curves among EA, EB , EC are elliptic,

• only one curve is elliptic.

• all curves are rational.

First case mean that (A,B,C) 6= (0, 1, 9). As we know, the variety (φ2)−1(y) is the intersection D1,α′ ∩D′2,β′
in the product EA×EB . Here D1,α′ and D′2,β′ are defined by formulas (??) and α′ = α

C , β
′ = β

C . Thus, divisors
D1,α′ and D′2,β′ are reducible. As we know, these divisors are of type (3, 3). Hence, one of component of D1,α′ is
of type (1, 1) or (1, 2). It means that curves EA and EB are isomorphic or 2-isogenous. By symmetry, we get the
same property for curves EA and EC . By theorem Bertini, general divisor D1,α′ is irreducible. Thus, there are:
one relation between A and B, because of EA and EB are isomorphic or 2-isogenous, one relation between A
and C because of EA and EB are isomorphic or 2-isogenous, one relation between α and A,B,C because divisor
D1,α′ is reducible. Thus, we obtain 1-dimensional variety of points y ∈ Y (3, 3) such that dimFφ

−1
2 (y) = 1 and

EA, EB , EC are elliptic curves.
Consider the second case. Without loss of generality, suppose that EA and EB are elliptic. Assume that

C 6= 0, i.e. C = 1 or 9. We can consider this case analogous to first one. Assume that C = 0. Then we have
the following relations:

(1 +
x1

y1
+
x2

y2
)(1 +

y1

x1
+
y2

x2
) = 0,

Assume 1 + x1

y1
+ x2

y2
= 0, 1 + y1

x1
+ y2

x2
6= 0. It means that α 6= 0, β = 0. Consider the equation:

(1 + x1 + x2)(1 +
1

y1
+

1

y2
)(1 +

y1

x1
+
y2

x2
) = α.

We can rewrite this equation by means of change the variables: xi 7→ 1
x′i

. We obtain the following equation:

(1 + x′1 + x′2)(1 + y1 + y2) =
AB

α
(1 + x′1y1 + x′2y2).

Arguments similar to first case show that there is the relation between A and B describing isomorphism or 2-
isogenous of EA and EB . Thus, in this case dimFS ≤ 1. Further, suppose that 1 + x1

y1
+ x2

y2
= 0, 1 + y1

x1
+ y2

x2
= 0.

Arguments quite similar to first case show us that EA and EB are isomorphic or 2-isogenous. Thus, we have
proved the second case.

Consider third case. Assume A = 0, B = 0 and 1 + x1 + x2 = 0, 1 + 1
y1

+ 1
y2

= 0. Then α = 0. We obtain
the following equations:

(1 +
x1

y1
+
x2

y2
)(1 +

y1

x1
+
y2

x2
) = C, (1 +

1

x1
+

1

x2
)(1 + y1 + y2) =

β

C
(1 +

y1

x1
+
y2

x2
).

Solving 1 + x1 + x2 = 0, 1 + 1
y1

+ 1
y2

= 0, we get that first equation defines non-singular curve of genus 4 for
general C. Thus, we obtain dimFS ≤ 1 in this case. Analogous arguments prove the rest of third case.

Fourth case mean that A,B,C = 0, 1, 9. Thus, we get dimFS ≤ 1. The lemma is proved.
Thus, we get dimFY1 ≤ 1. Hence, image of any component of X̃ under p′ and p′′ is dense in X(3, 3).

8.3 Function fields F (X(3, 3)), F (X(3, 3))Z3, F (X(3, 3))S3 as extensions of F (Y (3)).

Firstly, let us study function fields of X(3, 3) and its quotients.
Consider action of group S3 on X(3, 3) by permutations of pi, i = 1, 2, 3. There is a normal subgroup Z3�S3

and extensions of fields:.

F (Y (3)) ⊂ F (X(3, 3))S3 ⊂ F (X(3, 3))Z3 ⊂ F (X(3, 3)) (247)
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Using subsection ??, we have the isomorphisms:

F (Y (3)) = F (a(1,2,3), a(1,2), a(1,3), a(2,3)), F (X(3, 3))S3 = F (a(1,2,3), a(1,2), a(1,3), a(2,3), h), (248)

F (X(3, 3)) = F (x1, x2, y1, y2) (249)

Also, we have quadratic extension: F (X(3, 3)S3 ⊂ F (X(3, 3))Z3 . Thus, F (X(3, 3))Z3 =
F (a(1,2,3), a(1,2), a(1,3), a(2,3), h, w), where w satisfy to quadratic relation. Let us find this relation. As we
know, one can choose the generators a(1,2,3), a(1,2), a(2,3), a(1,3), h of the function field F (X(3, 3))S3 , where
a(1,2), a(1,3), a(1,2,3), a(1,3,2), h are described in terms of x1, x2, y1, y2 by formulas: (186),(189),(190),(223) and
satisfy to relation (224).

Consider the function field F (X(3, 3))Z3 . The generators of this field are a(1,2), a(1,3), a(2,3), a(1,2,3), h, w,
where w is given in terms of x1, x2, y1, y2 by formula:

w = (x1 − x2)(1− 1

x1
)(1− 1

x2
).

Therefore, we get the following relation:

w2 = a2
(1,2) + 18a(1,2) − 27− 4(h+

a3
(1,2)

h
). (250)

Thus, F (Σ)Z3 = F (α, h,w), where α, h,w satisfy to relations (259) and (250). Further, consider the field
F (X(3, 3)). This field is cubic extension of F (X(3, 3))Z3 . Let us show that generators of this field are
a(1,2), a(1,3), a(2,3), a(1,2,3), h, w, f , where f is given by formula:

f = x1 + ε
x2

x1
+ ε2

1

x2
,

where ε is primitive 3-root of unity. Consider the element g = x1 + ε2 x2

x1
+ ε 1

x2
. Evidently, fg ∈ F (X(3, 3))Z3 .

Moreover, x1 + x2

x1
+ 1

x2
∈ F (X(3, 3))Z3 . It can be shown in usual way that x1, x2 can be described in

terms of a(1,2), a(1,3), a(2,3), a(1,2,3), h, w, f . As we know from subsection ??, y1, y2 are rational function over
a(1,2), a(1,3), a(2,3), a(1,2,3), x1, x2. One can show that we have the following relation:

f3 = 1/8(a(1,2) − 3 + w)3 − 3(1− ε)(h− 3a(1,2) + 3)− 3(1− ε2)(
a3

(1,2)

h
− 3a(1,2) + 3). (251)

Thus, F (X(3, 3)) ∼= F (a(1,2), a(1,3), a(2,3), a(1,2,3), h, w, f) satisfying to (224), (250), (251).
We have proved the following proposition:

Proposition 84. We have the following isomorphisms of function fields:

•
F (X(3, 3))S3 = F (a(1,2), a(1,3), a(2,3), a(1,2,3), h), (252)

where h, a(1,2), a(1,3), a(2,3), a(1,2,3) satisfy to (224),

•
F (X(3, 3))Z3 = F (a(1,2), a(1,3), a(2,3), a(1,2,3), h, w), (253)

where w, h, a(1,2), a(1,3), a(2,3), a(1,2,3) satisfy to (224), (250),

•
F (X(3, 3)) = F (a(1,2), a(1,3), a(2,3), a(1,2,3), h, w, f), (254)

where f, w, h, a(1,2), a(1,3), a(2,3), a(1,2,3) satisfy to (224), (250), (251).
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8.4 General fibers of X(3, 3), X(3, 3)/Z3, X(3, 3)/S3 and Y (3) over F 3 =
F(a(1,2),a(1,3),a(2,3)).

Let us consider the variety Y (3). As we know, this variety is given by equation: a(1,2,3)a(1,3,2) = a(1,2)a(2,3)a(1,3),
where a(i,j) = 4TrPqiPqj , a(i,j,k) = 8TrPqiPqjPqk. Consider the involution σP defined early. In the coordinates
a(i,j), a(i,j,k) σP -action could be described as follows:

σP : a(i,j) 7→ a(i,j), a(i,j,k) 7→ −a(i,j,k), i, j, k = 1, 2, 3. (255)

We have the following decomposition of p′ into sequence of the following natural maps:

X(3, 3)
θ1 // X(3, 3)/Z3

θ2 // X(3, 3)/S3
θ // Y (3). (256)

Consider affine space F 3 = SpecF [a(1,2), a(1,3), a(2,3)]. Thus, we have dominant map: Y (3) → F 3. Fix general
point pt = (A,B,C) ∈ F 3. Consider fibres of the varieties X(3, 3), X(3, 3)/Z3, X(3, 3)/S3, Y (3) over pt. In
this situation fiber of Y (3) over pt is affine line F 1

α with coordinate α = a(1,2,3). Compactify this fiber as
projective line P1

α. Let us compactify fibres of X(3, 3), X(3, 3)/Z3, X(3, 3)/S3 and denote they by Σ, Σ/Z3,
Σ/S3 respectively. Therefore, we have the following natural maps:

Σ
θ1 // Σ/Z3

θ2 // Σ/S3
θ // P1

α. (257)

Using subsection 8.3, we have the following description of the function field of the algebraic curve Σ/S3:

F (Σ)S3 ∼= F (h, α), (258)

where h and α satisfy to relation:

h2α2p1(α) + hαp2(α) + p3(α) = 0. (259)

Polynomials p1(α), p2(α), p3(α) are given by formulas:

p1(α) = (A2C + α2 − CAα+ 3Aα)(BA2 −ABα+ 3Aα+ α2),

p2(α) = −A3(9Bα2A+2α4+6α2A−Bα3A+Bα2A2+9CAα2+3BC2Aα−14BCAα2−B2CA2α+3Cα3+6CA2Bα

+B2CAα2−ACα3 +A2Cα2 +2B2C2A2 +B3α2−9B2α2−B3αCA+3B2αCA−C2αBA2−C3αBA+C2α2BA

+3Bα3 −B2α3 + C3α2 − C2α3 + 18Bα2C +B2α2A+ C2α2A− 9C2α2),

p3(α) = A6(−CBα+ C2B + 3Cα+ α2)(B2C − CBα+ 3Bα+ α2).

It is easy that equation (259) is the relation (224). Note that degrees of polynomials p1, p2, p3 are 4. Consider
the following homogenous coordinates (h0 : h1), (α0 : α1) of the product P1

h×P1
α. We have the following identity

for affine coordinates h = h1

h0
, α = α1

α0
. Thus, Σ/S3 is the divisor of P1

h × P1
α of type (2, 6). Evidently, map

ψ : Σ/S3 → P1
α is the natural projection. For general (A,B,C) one can show that Σ/S3 has two singularities

((1 : 0)× (0 : 1)) ∈ P1
h × P1

α and ((0 : 1)× (1 : 0)) ∈ P1
h × P1

α which are double points. Hence, genus of Σ/S3 is
3. Further, let us calculate the ramification divisor Dθ ⊂ P1

α of the morphism ψ. We have studied this divisor
in the subsection 7.6. Substitute affine coordinate α by α1

α0
, we get that Dθ is given by equation:

α2
1α

2
0(p2

2(α0, α1)− 4p1(α0, α1)p2(α0, α1)). (260)

One can show that divisor Dθ has several components. Proposition 77 shows that equation (225) is the only
one component with multiplicity one. This equation is in the terms of the coordinates ui, i = 1, 2, 3. Recall that
u1 = A+B +C, u2 = α+ABC/α, u3 = (A− 1)(B − 1)(C − 1). Consider the equations (250), (224). For fixed
(A,B,C) we can rewrite relation (250) in the following manner:

w2 = A2 + 18A− 27− 4(h+
A3

h
). (261)
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Further, let us consider the following compactification of Σ/Z3. Curve Σ/Z3 ⊂ P1
w×P1

h×P1
α is given by equations

(259), (261) in affine coordinates. It is trivial that natural map θ2 is induced by projection P1
w × P1

h × P1
α →

P1
h × P1

α. Consider ramification divisor of θ2. Denote it by Dθ2 . By definition, Dθ2 ⊂ Σ/S3. It is easy that Dθ2
is given by equation:

h0h1((A2 + 18A− 27)h0h1 − 4h2
1 − 4A3h2

0). (262)

Finally, consider the following compactification of the curve Σ. Curve Σ ⊂ P1
f × P1

w × P1
h × P1

α is given by the
equations (224), (250), (251). Consider the ramification divisor Dθ1 ⊂ Σ/Z3. It is easy that this divisor is given
by equation:

w3
0h0h1(

1

8
((A−3)w0 +w1)3h0h1−w3

0(3(1−ε)(h1 +(−3A+3)h0)h1 +3(1−ε2)(A3h0 +(−3A+3)h1)h0)). (263)

8.5 Irreducibility of X(3, 6).

In this subsection we will prove that variety X(3, 6) is irreducible. Using birationality, it is sufficient to prove

the irreducibility of X̃.
Recall that there is the decomposition of p′ into sequence of the natural morphism (256). We can define

involution σ(q) on the X̃/Z3 × Z3 and X̃/S3 × S3. Thus, we get the following diagram:

X̃
θ1 //

θ1◦σ(q)

��

X̃/Z3

θ2 //

θ1

��

X̃/S3
θ //

θ1

��

X(3, 3)

θ1

��
X̃/Z3

σ(q)◦θ1//

θ2

��

X̃/Z3 × Z3

θ2◦σ(q)

��

θ2 // X̃/Z3 × S3
θ //

θ2

��

X(3, 3)/Z3

θ2

��
X̃/S3

θ1 //

θ

��

X̃/Z3 × S3

σ(q)◦θ2//

θ

��

X̃/S3 × S3
θ //

θ◦σ(q)

��

X(3, 3)/S3

θ

��
X(3, 3)

θ1 // X(3, 3)/Z3
θ2 // X(3, 3)/S3

σP ◦θ // Y (3)

(264)

We denote by θi, i = 1, 2 and θ all maps of factorizations by the same groups. One can show that this
commutative diagram and any square is fibred product.

Fix the general point pt = (A,B,C) ∈ F 3. Thus, we obtain the following commutative diagram:

Σ×P1
α

Σ
θ1 //

θ1◦σ(q)

��

Σ/Z3 ×P1
α

Σ
θ2 //

θ1

��

Σ/S3 ×P1
α

Σ θ //

φ1

��

Σ

θ1

��
Σ/Z3 ×P1

α
Σ

σ(q)◦θ1//

θ2

��

Σ/Z3 ×P1
α

Σ/Z3

θ2◦σ(q)

��

θ2 // Σ/Z3 ×P1
α

Σ/S3
θ //

θ2

��

Σ/Z3

θ2

��
Σ/S3 ×P1

α
Σ

θ1 //

θ

��

Σ/Z3 ×P1
α

Σ/S3
σ(q)◦θ2//

θ

��

Σ/S3 ×P1
α

Σ/S3
θ //

θ◦σ(q)

��

Σ/S3

θ

��
Σ

θ1 // Σ/Z3
θ2 // Σ/S3

σP ◦θ // P1
α

(265)

Assume that variety X̃ is reducible, i.e. X̃ = ∪sj=1X̃j . Using proposition 82, we get that for any component

X̃j variety pr′(X̃j) is dense in Y (3). Thus, for general point pt = (A,B,C) ∈ F 3 curve Σ ×P1
α

Σ is reducible.

Let us prove that Σ×P1
α

Σ is irreducible. It will be sufficient for irreducibility of X̃.
One can show that curves Σ and Σ/S3 are irreducible.
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Proposition 85. For general point pt = (A,B,C) ∈ F 3, curve Σ×P1
α

Σ is irreducible.

Proof. Our proof has the following steps:

• Σ/S3 ×P1
α

Σ/S3 is irreducible curve,

• Σ×P1
α

Σ/S3 is irreducible curve,

• Σ×P1
α

Σ/Z3 is irreducible curve,

• Σ×P1
α

Σ is irreducible one.

First step. As we know, maps ψ and ψ ◦ σ(q) are coverings of degree 2. Assume that Σ/S3 ×F 1
α

Σ/S3 is
reducible. Using proposition 82, we obtain that there are 2 components. Each component gives us the map
Σ/S3 → Σ/S3 such that the following diagram:

Σ/S3

{{wwwwwwww
θ

��
Σ/S3

σP ◦θ // P1
α

(266)

Thus, we have the following relation for ramification divisor Dθ:

σP (Dθ) = Dθ (267)

Recall that this divisor is defined by equation (225). Recall that this equation is expressed in terms of variables
u1, u2, u3, where u1 = A + B + C, u2 = α + β, u3 = (A − 1)(B − 1)(C − 1). Using relation β = ABC

α , we
get that σP (ui) = ui, i = 1, 3, σP (u2) = −u2. Consider equation (225) as polynomial over u2. One can see
that u2-degree of (225) is 3. Also, for general u1, u3 all coefficients of (225) are nonzero. Hence, σP (Dθ) 6= Dθ.
Contradiction. Therefore, Σ/S3 ×P1

α
Σ/S3 is irreducible.

Second step. Consider the curve Σ ×P1
α

Σ/S3. Assume that this curve is reducible. As we know, ψ :
Σ ×P1

α
Σ/S3 → Σ is covering of degree 2. Using proposition 82, we get that there are only 2 components of

Σ ×P1
α

Σ/S3. Each component is isomorphic to Σ. Consider the covering φ1 : Σ ×P1
α

Σ/S3 → Σ/Z3 ×P1
α

Σ/S3.
This covering has degree 3. Under assumption of reducibility of Σ×P1

α
Σ/S3, we obtain that curve Σ/Z3×P1

α
Σ/S3

has two components. Each component is isomorphic to Σ/Z3. Analogous to first step, we obtain that each
component defines the map such that the following diagram:

Σ/Z3

θ2

��

∼=

uukkkkkkkkkkkkkkk

Σ/S3 ×P1
α

Σ/S3
θ◦σ(q)

// Σ/S3

(268)

is commutative. Hence, ramification divisors of the maps Σ/S3 ×P1
α

Σ/S3 → Σ/S3 and Σ/Z3 → Σ/S3 coincide.
It can be shown in usual way that ramification divisor of Σ/S3 ×P1

α
Σ/S3 → Σ/S3 is θ−1(σP (Dθ). Thus,

coincidence of the divisors means that θ−1(σP (Dθ)) = Dθ2 . And hence, σP (Dθ) = θ(Dθ2). Divisor Dθ1 is
reducible. Component of Dθ2 with multiplicity one is defined by equation: (A2 + 18A− 27)h0h1− 4h2

1− 4A3h2
0.

It is easy that for general A, we get that there are two components h1 = th0 and h1 = A3

t h0, where c is a root

of equation: (A2 + 18A− 27) = 4(t+ A3

t ). Denote these two components by θ(Dθ2)′ and θ(Dθ2)′′ respectively.
Further, these components are defined by equations:

α2t2p1(α) + αtp2(α) + p3(α) = 0, (269)

α2A6p1(α) + αA3tp2(α) + p3(α)t2 = 0, (270)
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respectively. Hence, degθ(Dθ2) = 12. Recall that degDθ = 6. It contradicts with coincidence. Therefore, curve
Σ×P1

α
Σ/S3 is irreducible. Second step is proved.

Third step. Assume that curve Σ ×P1
α

Σ/Z3 is reducible. Using second step, we get that there are two
components of Σ ×P1

α
Σ/Z3. Thus, curve Σ/Z3 ×P1

α
Σ/Z3 has two components. Each component defines the

isomorphism: Σ/S3 ×P1
α

Σ/Z3 → Σ/S3 ×P1
α

Σ/Z3 such that the following diagram:

Σ/S3 ×P1
α

Σ/Z3

∼=

vvlllllllllllll
θ2

��
Σ/S3 ×P1

α
Σ/Z3

σ(q)◦θ2// Σ/S3 ×P1
α

Σ/S3

(271)

Denote by D̃θ2 the ramification divisor of map: Σ/S3 ×P1
α

Σ/Z3 → Σ/S3 ×P1
α

Σ/S3. Therefore, we have the

following relation: σ(q)(D̃θ2) = D̃θ2 . It is easy that D̃θ2 = θ−1(Dθ2). Using universality of fibred product, we
obtain that

θ(Dθ2) = σP (θ(Dθ2)) (272)

As we know from second step, θ(Dθ2) has two components θ(D′θ2 and θ(D′′θ2 , which are given by equations (269)
and (270) respectively. We have two cases: σP (θ(D′θ2) = θ(D′θ2) and σP (θ(D′θ2) = θ(D′′θ2). Consider coefficients
p′6, p

′
5 and p′′6 , p

′′
5 at α6 and α5 of (269) and (270). One can see that these coefficients of the polynomials (269)

and (270) are p′6 = t2; p′5 = A(t(6 − B − C) − 2A3) and p′′6 = A6; p′′5 = A6(A(6 − B − C) − 2t) respectively. It
is evident, σP transforms p′5 7→ −p′5, p′6 7→ p′6; p′′5 7→ −p′′5 , p′′6 7→ p′′6 . First case means that p′5p

′
6 = 0, second case

means that p′′6p
′
5 +p′6p

′′
5 = 0. One can see that for general (A,B,C) first and second cases are impossible. Third

step is proved.
Fourth step. Assume curve Σ ×P1

α
Σ is reducible. Using third step, we obtain that Σ ×P1

α
Σ has three

components. Each component defines map: Σ/Z3 ×P1
α

Σ→ Σ/Z3 ×P1
α

Σ such that the following diagram:

Σ/Z3 ×P1
α

Σ

vvnnnnnnnnnnnn
θ1

��
Σ/Z3 ×P1

α
Σ

σ(q)◦θ1// Σ/Z3 ×P1
α

Σ/Z3

(273)

is commutative. It can be shown in usual way that

θ2 ◦ θ1(Dθ) = σP ◦ θ2 ◦ θ1(Dθ). (274)

Direct checking in style of third step shows that for general A,B,C it is not true. Fourth step is proved.

Corollary 86. Variety X(3, 6) is irreducible.

8.6 Properties of the morphism: φ1 : X(3, 6)→ Y (6).

In this subsection we will prove that morphism µ : Z → Y (6) is a birational immersion.
Consider morphism ψ2 : Y (3)→ Y . As we know from subsection ??, we have the following decomposition:

Y (3)
ψ′2 // U

ψ′′2 // Y (275)

where U is affine space F 3 with coordinates u1, u2, u3 defined in subsection??. Also, note the following property
of this decomposition:

Y (3)
ψ′2 //

σP

��

U
ψ′′2 //

σP

��

Y

σ

��
Y (3)

ψ′2 // U
ψ′′2 // Y

(276)
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One can show that σP acts on U by rule: σP : u1 7→ u1, u2 7→ −u2, u3 7→ u3. This action coincides with action
of γ from subsection ??. Also, recall that we have the following commutative diagram for X(3, 3):

X(3, 3)
φ2 //

φ2◦τ
��

Y (3)

ψ′2

��
Y (3)

ψ′2 // U

(277)

Using these diagrams, we obtain that the diagram (242) can be rewritten in the following manner:

X̃
p′◦σ(q)

//

p′

��

X(3, 3)
φ2 //

φ2◦τ
��

Y (3)

ψ′2

��
Y (3)

ψ′2 //

σP

��

U

σP

��
X(3, 3)

φ2◦τ //

φ2

��

Y (3)
ψ′2 //

ψ′2

��

U

ψ′′2

��vvvvvvvvvvv

vvvvvvvvvvv

Y (3)
ψ′2 // U

ψ′′2 // Y

(278)

Thus, we have proved the following proposition:

Proposition 87. Image of variety X̃ under map Φ is in the subvariety Y (3)×U Y (3), i.e. we have the following
commutative diagram:

X̃

��

Φ

((QQQQQQQQQQQQQQQ

Y (3)×U Y (3) � � // Y (3)×Y Y (3)

(279)

Corollary 88. Similar statement for varieties Z̃, X̃ and morphisms µ̃, Φ′ are true. Also, we get that the
following diagram:

Z̃
µ̃ //

π×π
��

Y (3)×U Y (3)

π×π
��

X̃
Φ′ // Y(3)×U Y(3)

(280)

is commutative.

Proposition 89. Morphism µ̃ : Z̃ → Y (3)×Y Y (3) is a birational immersion.

Proof. It is sufficient to prove that morphism Φ′ is a birational immersion. Consider the following commutative
diagram:

X̃
Φ′ //

p′

��

Φ′(X̃ )
� � // Y(3)×U Y(3)

pr

��
X

φ2 // Y(3)

(281)

where pr is natural projection. As we know, degp′ = 2,degφ2 = 2. Hence, we have the following cases:
degΦ′ = 1, 2, 4. Let us prove that degΦ′ = 1. It is sufficient to prove that map degΦ′ = 1, i.e. Φ′ is a birational
immersion.
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Fix general point u = (u1, u2, u3) ∈ U . Denote by X̃u, Xu and Eu the fibers of X̃ , X and Y(3) over u
respectively. Thus, fiber of Y(3)×U Y(3) over u is a product Eu×Eu. Statement of the proposition means that

for general point u ∈ U morphism Φ′′ is a immersion of the fiber X̃u = Xu ×Eu Xu into Eu × Eu. As we know
from subsection ??, for general point u ∈ U curve Eu is elliptic curve given by (??). Fiber Xu is the union of
divisors (P, P + Su) and (P, P − Su), P ∈ Eu for Su ∈ Pic0(Eu). Recall that there is the symmetry γ of Y (3)
defined by rule: a(i,j) 7→ a(i,j), a(1,2,3) 7→ −a(1,3,2), a(1,3,2) 7→ −a(1,2,3). Identify the fibers Eu and Eγ(u) via γ.
It can be shown in usual way that under this identification, involution σP : Y(3) → Y(3) has the following
description:

σP : (P,u) 7→ (2R− P, γ(u)), (282)

where (P,u) ∈ Eu, R = (0 : 1 : 0) is inflection point in the compactification of Eu as cubic curve in P2. Fix the
point P ∈ Eu. Thus, we obtain the following diagram:

P

uukkkkkkkkkkkkkkkkk

��
P ± Su

//

��

u

��
2R− P ∓ Su

//

))SSSSSSSSSSSSSS γ(u)

2R− P ∓ Su ± Sγ(u)

OO

(283)

Condition degΦ′ = 4 means that all points 2R− P ∓ Su ± Sγ(u) coincide. It is clear that it means 2Su = 0.
But it contradicts with proposition ??. Thus, this case is impossible.

Consider case degΦ′ = 2. In this case, we get 2R − P − Su − Sγ(u) = 2R − P + Su + Sγ(u) and
2R − P + Su − Sγ(u) = 2R − P − Su + Sγ(u). Assume that P = R. Thus, points R + Su + Sγ(u) and
R − Su + Sγ(u) are points of second order of the cubic curve Eu. This pair of points is defined over O(U). As
we know, second order’s points of cubic curve are in the line. Therefore, third point of second order defines
the section of fibration Y(3) → U . Consider the fibration Y(3) → U . As we know, this fibration is given by
equation (??). Points of second order of cubic curve Eu are intersection of Eu and line w = 0 in P2. Denote this
intersection by V . Variety V is given by equation:

−4v3
1 + c′1v

2
1 + c′2v1 + c′3 = 0, (284)

where c′1, c
′
2, c
′
3 ∈ F [u1, u3] are given by formulas (??). As we know, one can transform variety V into (??). It is

clear that V is irreducible. Thus, polynomial from formula (284) is irreducible over F and hence over F(u1, u3).
Therefore, there are no points of second order of cubic curve Eu which are sections over U . Thus, case degΦ′ = 2
is impossible. There is only one possible case degΦ′ = 1.

Corollary 90. Morphism µ from diagram (238) is a birational immersion.

Let us prove the σ
(3)
P -invariance of the image Φ(X̃) ⊂ Y (3) ×Y Y (3). Recall that there is a well-defined

involution σ
(3)
P acting on Y (3) ×Y Y (3). Also, recall that there is a well-defined involution σ

(3)
P on the variety

Y(3)×Y Y(3). It is sufficient to prove that Φ′(X̃ ) is σ
(3)
P - invariant for σ

(3)
P -invariance of the Φ(X̃). Fix general

point u ∈ U . Consider the fiber of the variety Y(3) ×U Y(3) over u. As we know, this fiber is a product of

isomorphic elliptic curves Eu × Eu. Also, consider the fibers X̃u and X̃
σ

(3)
P (u)

. As we know from proof of the

proposition 89, the fiber X̃u is a union of four elliptic curves of the following type: (P, 2R − P ± Su ± Sγ(u)),

where P ∈ Y(3)u = Eu, 2R − P ± Su ± Sγ(u) ∈ Y(3)γ(u) = Eu. After applying σ
(3)
P , we obtain that σ

(3)
P (X̃u) =
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(2R − P, P ± Su ± Sγ(u)), where 2R − P ∈ Y(3)γ(u), P ± Su ± Sγ(u) ∈ Y(3)γ(u). Let us check that σ
(3)
P (X̃u) =

X̃
σ

(3)
P (u)

= X̃γ(u).

Let us start from point 2R− P ∈ Y(3)γ(u). Using properties of X̃ , we obtain the following diagram:

2R− P

uulllllllllllll

��
2R− P ± Sγ(u) //

��

γ(u)

��
P ± Sγ(u)

((RRRRRRRRRRRRR
// u

P ± Sγ(u) ± Su

OO

(285)

Thus, we obtain that σ
(3)
P (X̃u) = X̃γ(u), and hence, Φ′(X̃ ) is σ

(3)
P - invariant subvariety of Y(3) ×Y Y(3).

Therefore, we have proved the following theorem:

Theorem 91. Image Φ(X̃) = µ̃(Z̃) ⊂ Y (3)×Y Y (3) is σ
(3)
P - invariant.

9 Variety of orthogonal pairs in sl(6).

9.1 Previous remarks.

Fix two partitions θ1 and θ2 of {1, 2, 3, 4, 5, 6} into two complement subsets. Without loss of generality, assume
that θ1 = (1, 2, 3)∪ (4, 5, 6) and θ2 = (1, 2, 4)∪ (3, 5, 6). Denote by ρ the permutation (3, 4). Denote by Γ3,2 the
complete bipartite graph with 3 and 2 vertices in upper and down rows respectively.

Recall that we denote by A<t1,...,ts> the subalgebra of B(Γ) generated by elements t1, ..., ts ∈ B(Γ). Denote
by q1, ..., q6, p1, p2, p3 the generators of Br(Γ3,6). Thus, we have the following natural maps:

j : A<q1,q2,p1,p2,p3>
∼= Br(Γ3,2)→ A<q1,q2,q3,p1,p2,p3>

∼= Br(Γ3,3), (286)

j′ : A<q1,q2,p1,p2,p3>
∼= Br(Γ3,2)→ A<q1,q2,q4,p1,p2,p3>

∼= Br(Γ3,3), (287)

i : A<q1,q2,q3,p1,p2,p3>
∼= Br(Γ3,3)→ Br(Γ3,6), i′ : A<q1,q2,q4,p1,p2,p3>

∼= Br(Γ3,3)→ Br(Γ3,6) (288)

defined obviously. It is trivial that we have the following commutative diagram:

A<q1,q2,p1,p2,p3>
j //

j′

��

A<q1,q2,q3,p1,p2,p3>

i

��
A<q1,q2,q4,p1,p2,p3>

i′ // Br(Γ3,6)

(289)

Analogously, we have the following commutative diagram:

A<q5,q6,p1,p2,p3>
j //

j′

��

A<q4,q5,q6,p1,p2,p3>

i

��
A<q3,q5,q6,p1,p2,p3>

i′ // Br(Γ3,6)

(290)
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Consider algebra B3,6 which is a quotient of the B 1
6
(Γ3,6) by ideal I generated by the element

∑6
i=1 qi − 1.

As we know
B3,6

∼= A<q1,q2,q3,p1,p2,p3> ∗A<Q;p1,p2,p3>
A<q4,q5,q6,p1,p2,p3>, (291)

where Q = q1 + q2 + q3. Also, we have the isomorphism of algebras:

B3,6
∼= A<q1,q2,q4,p1,p2,p3> ∗A<Q′;p1,p2,p3>

A<q3,q5,q6,p1,p2,p3>, (292)

where Q′ = q1 + q2 + q4. It is trivial that one can get second isomorphism from first one by com-
position with automorphism ρ. Identify variety M6(A<q1,q2,q3,p1,p2,p3> ∗A<Q;p1,p2,p3>

A<q4,q5,q6,p1,p2,p3>) and
M6(A<q1,q2,q4,p1,p2,p3> ∗A<Q′;p1,p2,p3>

A<q3,q5,q6,p1,p2,p3>) with X(3, 3) ×Y (3) X(3, 3). It is easy to see that ρ is

a birational involution of X(3, 3) ×Y (3) X(3, 3). Note that second identification is obtained from first one by
composition with ρ. Standard arguments shows that isomorphisms (291) and (292) correspond to birational
morphisms: ζ, ζ ◦ ρ : X(3, 6)→ X(3, 3)×Y (3) X(3, 3).

It is easy that we have the commutative diagram:

A<p1,p2,p3>
//

��

A<q1,q2,p1,p2,p3>

��
A<q5,q6,p1,p2,p3>

// B3,6

(293)

Therefore, we get the natural morphism: A<q1,q2,p1,p2,p3> ∗A<p1,p2,p3>
A<q5,q6,p1,p2,p3> → B3,6. Using diagram

(289), ??, (??), we get the following diagram:

A<q1,q2,q3,p1,p2,p3> ∗A<Q;p1,p2,p3>
A<q4,q5,q6,p1,p2,p3>

∼= B3,6
OO

ρ

��

A<q1,q2,p1,p2,p3> ∗A<p1,p2,p3>
A<q5,q6,p1,p2,p3>

11dddddddddddddddddddddddddddddddddd

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

A<q1,q2,q4,p1,p2,p3> ∗A<Q′;p1,p2,p3>
A<q3,q5,q6,p1,p2,p3>

∼= B3,6

(294)
It is easy that there is unique 6-dimensional module of algebra A<p1,p2,p3> such that rank of pi is 1.

Identifying varieties M6(A<q1,q2,p1,p2,p3>) and M6(A<q5,q6,p1,p2,p3>) with algebraic torus X(3, 2) = (F ∗)2,
we get the natural map: X(3, 6)→ X(3, 2)×X(3, 2). Thus, we get the following commutative diagram:

X(3, 6)
ζ //

ζ◦ρ
��

X̃

��
X̃ // X(3, 2)×X(3, 2)

(295)

Also, one can take the quotient by symmetric group S
(p)
3 . Using commutativity ρ and S

(p)
3 , we get the following

commutative diagram:

Z
ζ̃ //

ζ̃◦ρ
��

Z̃

��

Z̃ // X(3, 2)×X(3, 2)/S
(p)
3

(296)

Further, consider the map: A6 = A<P ;q1,...q6> → B3,6, where P = p1 +p2 +p3. Consider algebra A<P ;q1,q2>

and morphism: A<P ;q1,q2> → B 1
6
(Γ3,2). Also, consider subalgebra A<P> = F ⊕ F . It is easy that we have
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natural morphisms: A<P> → A<P ;q1,q2> and A<P> → A<p1,p2,p3,Q> defined obviously. One can define the
natural morphism: A<P,q1,q2> ∗A<P> A<P,q5,q6> → A<q1,q2,p1,p2,p3> ∗A<p1,p2,p3>

A<q5,q6,p1,p2,p3>. It could be
shown in usual way that there is a commutative diagram:

A<q1,q2,p1,p2,p3> ∗A<p1,p2,p3>
A<q5,q6,p1,p2,p3>

// B3,6

A<P,q1,q2> ∗A<P> A<P,q5,q6>

OO

// A6

OO (297)

Identify variety of modulesM6(A<P,q1,q2>) andM6(A<P,q5,q6>),satisfying to condition: rkP = 3, rkqi = 1,
with affine space Y (2) = F 1, we obtain natural map: Y (6)→ Y (2)× Y (2).

Denote by π′, π′Y , π′′ the natural morphisms X(3, 6) → X(3, 2) × X(3, 2), Y (6) → Y (2) × Y (2) and
X(3, 2)×X(3, 2)→ Y (2)× Y (2) respectively. It is easy that

π′ : (p1, p2, p3; q1, ..., q6) 7→ (p1, p2, p3; q1, q2)× (p1, p2, p3; q5, q6) (298)

π′Y : (P ; q1, ..., q6) 7→ (P ; q1, q2)× (P ; q5, q6) (299)

and
π′′ : (p1, p2, p3; q1, q2)× (p1, p2, p3; q5, q6) 7→ (p1 + p2 + p3; q1, q2)× (p1 + p2 + p3; q5, q6) (300)

Using technics of subsection??, we get the following commutative diagram of varieties:

X(3, 6)

φ1

��

π′ // X(3, 2)×X(3, 2)

π′′

��
Y (6)

π′Y // Y (2)× Y (2)

(301)

Also, using standard arguments, we get the following commutative diagram:

A<P,q1,q2> ∗A<P> A<P,q5,q6> //

��

A<P,q1,q2,q3> ∗A<P,Q> A<P,q4,q5,q6>

��
A<P,q1,q2,q4> ∗A<P,Q′> A<P,q3,q5,q6> // A6

(302)

where Q = q1 + q2 + q3 and Q′ = q1 + q2 + q4. Identify varieties M6(A<P,q1,q2,q3> ∗A<P,Q> A<P,q4,q5,q6>) and
M6(A<P,q1,q2,q4> ∗A<P,Q′> A<P,q3,q5,q6>) with Y (3)×Y Y (3). Also, we can define birational involution ρ acting
on Y (3) ×Y Y (3) transforming one identification to other one. Thus, we have the commutative diagram of
varieties:

Y (6) //

��

Y (3)×Y Y (3)

��
Y (3)×Y Y (3) // Y (2)× Y (2)

(303)

Consider map: π̂ : X̃ → X(3, 2)×X(3, 2) defined by rule:

π̂ : (p1, p2, p3; q1, q2, q3)× (p1, p2, p3; q4, q5, q6) 7→ (p1, p2, p3; q1, q2)× (p1, p2, p3; q5, q6) (304)

It is easy that π′ is a composition of birational morphism ζ and π̂. Thus, we have the following commutative
diagram:

X(3, 6)

φ1

��

ζ // X̃

Φ

��

π̂ // X(3, 2)×X(3, 2)

π′′

��
Y (6)

ψ // Y (3)×Y Y (3)
ψ′ // Y (2)× Y (2)

(305)
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Let us consider the quotient of the varieties in the higher row of diagram (305) by action of symmetric group

S
(p)
3 . There is a commutative diagram:

Z
ζ̂ //

��

Z̃
π̂ //

Φ′

��

X(3, 2)×X(3, 2)/S
(p)
3

π′′

��
Y (6)

ψ // Y (3)×Y Y (3)
ψ′ // Y (2)× Y (2)

(306)

Denote by Π the composition: π′′ ◦ π̂ : Z̃ → Y (2) × Y (2). Also, using diagram (296), we get the following
commutative diagram:

Z
ζ̃ //

ζ̃◦ρ
��

Z̃

Π

��
Z̃

Π // Y (2)× Y (2)

(307)

9.2 Properties of morphism π̂ : X̃ → X(3, 2)×X(3, 2).

In this subsection we will prove that morphism π̂ is dominant and has degree 12.
As we know, variety X̃ is a fibred product X(3, 3)×Y (3)X(3, 3) and X(3, 3) = (F ∗)4. Y (3) is a hypersurface

in F 5
A,B,C,α,β with coordinates defined by equation ABC = αβ. It is clear that X(3, 2) = (F ∗)2. Define the

coordinates in X(3, 3)×Y (3) X(3, 3) as follows: a1 = 36Trp1q1p2q2, b1 = 36Trp1q1p3q2, x1 = 36Trp1q1p2q3, y1 =
36Trp1q1p3q3, a2 = 36Trp1q5p2q6, b2 = 36Trp1q5p3q6, x2 = 36Trp1q4p2q6, y2 = 36Trp1q4p3q6. Then morphism π̂
is given by formula:

π̂ : (a1, b1, x1, y1)× (a2, b2, x2, y2) 7→ (a1, b1, a2, b2) (308)

Fix a general point (a1 = a, b1 = b, a2 = c, b2 = d) ∈ X(3, 2) × X(3, 2) = (F ∗)4. Let us prove that
π̂−1(a, b, c, d) is non-empty. It can be shown in usual way that pre-image π̂−1(a, b, c, d) is a solution of the
following system of equations:

(1 + a+ x1)(1 +
1

a
+

1

x1
) = (1 + c+ x2)(1 +

1

c
+

1

x2
) (309)

(1 + b+ y1)(1 +
1

b
+

1

y1
) = (1 + d+ y2)(1 +

1

d
+

1

y2
) (310)

(1 +
a

b
+
x1

y1
)(1 +

b

a
+
y1

x1
) = (1 +

c

d
+
x2

y2
)(1 +

d

c
+
y2

x2
) (311)

(1 + a+ x1)(1 +
1

b
+

1

y1
)(1 +

b

a
+
y1

x1
) = −(1 + c+ x2)(1 +

1

d
+

1

y2
)(1 +

d

c
+
y2

x2
) (312)

(1 +
1

a
+

1

x1
)(1 + b+ y1)(1 +

a

b
+
x1

y1
) = −(1 +

1

c
+

1

x2
)(1 + d+ y2)(1 +

c

d
+
x2

y2
). (313)

Let us simplify this system. For this purpose, introduce the following variables:

α1 =
1 + a√
a
, α2 =

1 + c√
c
, β1 =

1 + b√
b
, β2 =

1 + d√
d
, γ1 =

a+ b√
ab
, γ2 =

c+ d√
cd

x =
x1√
a
, y =

y1√
b
, z =

x2√
c
, w =

y2√
d
.

One can check that there are relations between αi, βi, γi, i = 1, 2:

α2
i + β2

i + γ2
i − αiβiγi − 4 = 0, i = 1, 2. (314)
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Thus, we obtain the following system:

(α1 + x)(α1 +
1

x
) = (α2 + z)(α2 +

1

z
) (315)

(β1 + y)(β1 +
1

y
) = (β2 + w)(β2 +

1

w
) (316)

(γ1 +
x

y
)(γ1 +

y

x
) = (γ2 +

z

w
)(γ2 +

w

z
) (317)

(α1 + x)(β1 +
1

y
)(γ1 +

y

x
) = −(α2 + z)(β2 +

1

w
)(γ2 +

w

z
) (318)

(α1 +
1

x
)(β1 + y)(γ1 +

x

y
) = −(α2 +

1

z
)(β2 + w)(γ2 +

z

w
) (319)

Also, let us rewrite two last equations in the following manner:

(α1 + x)(β1 +
1

y
)(γ2 +

z

w
) = −(α2 + z)(β2 +

1

w
)(γ1 +

x

y
) (320)

(α1 +
1

x
)(β1 + y)(γ2 +

w

z
) = −(α2 +

1

z
)(β2 + w)(γ1 +

y

x
). (321)

Consider the following compactification of these equations: we will consider F ∗ with coordinates x, y, z, w as
open dense subvariety of product P1

(x0:x1) × P
1
(y0:y1) × P

1
(z0:z1) × P

1
(w0:w1). One can describe non-homogenous

coordinates in terms of homogenous ones as follows: x = x1

x0
, y = y1

y0
, z = z1

z0
, w = w1

w0
.

Denote by E1, E2 the curves in the product P1
(x0:x1)×P

1
(z0:z1) and P1

(y0:y1)×P
1
(w0:w1) given by formulas (315)

and (316) respectively. It is easy that these curves are elliptic for general α1, α2, β1, β2. One can prove the
following proposition:

Proposition 92. For general α1, α2, β1, β2 elliptic curves E1 and E2 are not isogenous.

Denote by R00, R01, R10, R11 the points (0 : 1) × (0 : 1), (0 : 1) × (1 : 0), (1 : 0) × (0 : 1), (1 : 0) × (1 : 0) of
curve E1 respectively. We will denote by R′00, R

′
01, R

′
10, R

′
11 the same points of E2. Denote by Q00, Q01, Q10, Q11

the points (1 : −α1) × (1 : −α2), (1 : −α1) × (−α2 : 1), (−α1 : 1) × (1 : −α2), (−α1 : 1) × (−α2 : 1) of curve
E1. Also, denote by Q′00, Q

′
01, Q

′
10, Q

′
11 the points (1 : −β1) × (1 : −β2), (1 : −β1) × (−β2 : 1), (−β1 : 1) × (1 :

−β2), (−β1 : 1)× (−β2 : 1) of curve E2. It is easy that

{R00, R01, R10, R11} = E1 ∩ {x0x1z0z1 = 0}, {R′00, R
′
01, R

′
10, R

′
11} = E2 ∩ {y0y1w0w1 = 0}

Using proposition 92, we obtain that NS(E1 × E2) = Z ⊕ Z, where NS(E1 × E2) is Neron-Severi group of
E1 × E2. One can check that there is an involution τ : E1 × E2 → E1 × E2 defined by

τ : (x0 : x1)× (y0 : y1)× (z0 : z1)× (w0 : w1) 7→ (x1 : x0)× (y1 : y0)× (z1 : z0)× (w1 : w0).

Recall that there are divisors of E1 × E2 of two types: ”horizontal” - h1 = point × E2 and ”vertical” -
h2 = E1 × point. Denote by D1 and D2 the divisors in E1 ×E2 given by (320), (321). Rewrite these equations
in homogenous coordinates. We get D1:

(α1x0 + x1)(β1y1 + y0)(γ2w1z0 + w0z1) + (α2z0 + z1)(β2w1 + w0)(γ1x0y1 + x1y0) = 0 (322)

and D2:
(α1x1 + x0)(β1y0 + y1)(γ2w0z1 + w1z0) + (α2z1 + z0)(β2w0 + w1)(γ1x1y0 + x0y1) = 0 (323)

It is easy that τ(D1) = D2. Also, denote by D the divisor given by equation (311). We will say that divisor D
of E1 × E2 is of type (a, b) iff D · h2 = a,D · h1 = b. Let us prove the following proposition:
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Proposition 93. D1 and D2 of E1 × E2 are divisors of type (4, 4). Divisors D1 and D2 are reducible:

D1 = Q00 × E2 + E1 ×Q′11 +D′1, D2 = Q11 × E2 + E1 ×Q′00 +D′2, (324)

where D′i, i = 1, 2 are divisors of type (3, 3). In particular, D′1 �L D′2. For general αi, βi, i = 1, 2 divisors
D′1, D

′
2 are irreducible. D′1 ·D′2 = 18.

Proof. It is easy that Q00×E2 +E1×Q′11 is a component of D1. One can check that for general αi, βi, i = 1, 2
there are not a vertical and horizontal components in D′1. Hence, if D′i, i = 1, 2 are reducible, then there are
components of type (1, 1) or (1, 2). But it means that curve E1 and E2 are isomorphic or 2-isogenous. Using
proposition 92, we get the required.

Corollary 94. For general point (a, b, c, d) ∈ X(3, 2) × X(3, 2) pre-image π̂−1(a, b, c, d) is a finite set. Thus,
morphism π̂ is dominant.

Let us calculate degree of p̂r. For this purpose, consider points of D′1 · D′2 which lying in the
x0x1y0y1z0z1w0w1 = 0. One can show that there are 4 points: R00×R′00, R11×R′11, R01×R′10, R10×R′01. Also,
we have to find points of intersection D′1 ∩D′2 which lying in D. It can be shown in usual way that there are
points S1 = Q10×Q′01, S2 = Q01×Q′10 ∈ D′1∩D′2 not lying in D. For general point (a, b, c, d) ∈ X(3, 2)×X(3, 2)
intersection multiplicities of these point is 1. Therefore, we have proved the following:

Proposition 95. Degree of morhism π̂ : X̃ → X(3, 2)×X(3, 2) is 12.

9.3 Properties of fibration Π = π′′ ◦ π̂ : Z̃ → Y (2)× Y (2).

In this subsection we will prove that general fibre of Π is a surface of general type.
Consider map π̂ : X̃ → X(3, 2)×X(3, 2). Let us introduce natural compactification of X(3, 2)×X(3, 2) as

follows. X(3, 2) = (F ∗)2 is an open subvariety of projective space P2, i.e. compactification of X(3, 2)×X(3, 2)
is P2 × P2. Denote by π′′ the rational mapping: P2 × P2 → P1 × P1 defined on X(3, 2)×X(3, 2)..

Also, consider S
(p)
3 - invariant compactification X̃c of X̃ such that there is morphism: π̂c : X̃c → P2 × P2.

By construction, morphism π̂c coincide with π̂ on the open subvarieties X̃ and X(3, 2)×X(3, 2). Degree of π̂c

is 12.

Proposition 96. Ramification divisor D̂ ⊂ P2 × P2 of π̂c is of type (a, a), a ≥ 22.

Proof. Let us make the following notes: Denote by [pt], [line] the classes of point and line in P2. It is well-known
that

H0(P2 × P2) = Z, H2(P2 × P2) = Z⊕ Z, H4(P2 × P2) = Z⊕ Z⊕ Z, H6(P2 × P2) = Z⊕ Z, H8(P2 × P2) = Z.

Generators of homology groupsH0, H2, H4, H6, H8 are [pt]×[pt]; [pt]×[line], [line]×[pt]; P2×[pt], [line]×[line], [pt]×P2;
P2 × [line], [line]× P2 and P2 × P2 respectively. It is well-known that Pic(P2 × P2) = Z⊕ Z.

Using obvious symmetry, we get that D̂ is homologically equivalent to a([line] × P2 + P2 × [line]). Let us
prove that a ≥ 22. Fix general line l in P2 and general point P ∈ P2. Consider the line l × P ⊂ P2 × P2.
Consider curve C = p̂r−1(l × P ). As we know, π̂|C : C → l × P is a map of degree 12. Ramification divisor of

π̂|C is the intersection D̂ ∩ l × P . By Hurwitz’s formula, we obtain the following formula:

2gC − 2 = 12(−2) + deg(D̂ ∩ l × P ) = −24 + a, (325)

where gC is genus of curve C. Hence, a = 22 + 2gC ≥ 22.

Let us prove the following proposition:

Proposition 97. Fix a general (A,B) ∈ P1×P1. As we know, if A,B 6= 0, 1, 9,∞ then π′′−1(A,B) is a product

of elliptic curves. Denote by X̃c
A,B the fiber of X̃c over A,B, then fiber X̃c

A,B is a surface of general type.
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Proof. Consider map: π′′ : P2 → P1, where P2 and P1 are compactifications of X(3, 2) and Y (2) respectively.
It is easy that map: π′′ in non-homogenous coordinates is given by formula: (x, y) 7→ (1 + x + y)(1 + 1

x + 1
y ).

As we know from subsection??, this map defines the elliptic family. It is well-known that A,B 6= 0, 1, 9,∞ fiber
of this family is elliptic curve. Denote by EA × EB the fiber of π′′ over A,B.

Further, we have the map: π̂A,B : X̃c
A,B → EA × EB . Consider Stein factorization of π̂A,B :

X̃c
A,B

π̂1 // Xc
A,B

π̂2 // EA × EB (326)

Morphisms π̂1 and π̂2 have connected fibers and discrete fibers respectively. Moreover, surface Xc
A,B have no

rational curves, hence it is minimal surface. Further, ramification divisor of π̂ coincides with ramification divisor
of π̂2. Thus, canonical class KA,B of Xc

A,B is π̂−1
2 (D̂) and, using proposition 96, we get that K2

A,B > 0. Since
Xc
A,B is covering of product of elliptic curves, it is irrational. Thus, Xc

A,B is a surface of general type (cf.??).

Therefore, X̃c
A,B is surface of general type.

Further, consider Π : Z̃ → Y (2) × Y (2). As we know, morphism Π is a composition of Z̃ →
X(3, 2) × X(3, 2)/S

(p)
3 and X(3, 2) × X(3, 2)/S

(p)
3 → Y (2) × Y (2). Let us consider compactification Z̃c such

that Πc : Z̃c → P1 × P1 is a composition of Z̃c → P2 × P2/S
(p)
3 and P2 × P2/S

(p)
3 → P1 × P1.

Proposition 98. Fiber of P2 × P2/S
(p)
3 over point (A,B), A,B 6= 0, 1, 9,∞ is a K3 - surface.

Proof. We have to prove that quotient of EA × EB by action of S
(p)
3 is a K3-surface. One can check that

Z3 C S
(p)
3 acts on EA × EB without fixed points. Thus, quotient of EA × EB by Z3 is a complex torus. Also,

one can prove that quotient S
(p)
3 /Z3 acts on EA×EB/Z3 by formula: x 7→ −x, x ∈ EA×EB/Z3. Thus, quotient

EA × EB/S(p)
3 is a Kummer surface.

Moreover, we can prove the following proposition:

Proposition 99. For general point (A,B) ∈ P1 × P1 the fiber Π−1(A,B) = Z̃A,B is a surface of general type.

Proof. The proof is quite similar to proof of proposition 97.

9.4 Birational involutions of Z.

In this subsection we will study properties of some birational involutions of Z. We will denote by Bir(X)
the group of birational automorphisms of the variety X. Recall that permutation ρ = (3, 4) is a well-defined

involution of X(3, 6). Using ζ, we can define birational involution ζ ◦ ρ ◦ ζ−1 ∈ Bir(X̃). As we know, actions
of S3 and S6 commute. Therefore, we have the well-defined involution ρ ∈ Aut(Z) and birational involution

ζ̃ ◦ ρ ◦ ζ̃−1 ∈ Bir(Z̃). As we know, Y (6) is S6 - variety. One can check that µ is S6 - invariant morphism. Thus,
we have the following commutative diagram:

Y (3)×Y Y (3)

Z

µ̃◦ζ̃
99sssssssssss

µ̃◦ζ̃◦ρ %%KKKKKKKKKKK
µ // Y (6)

ψ

ffMMMMMMMMMM

ψ◦ρ

xxqqqqqqqqqq

Y (3)×Y Y (3)

(327)

Actually, ψ ◦ µ = µ̃ ◦ ζ̃. Using S6 - invariance of ρ, we obtain that ψ ◦ ρ ◦ µ = ψ ◦ µ ◦ ρ = µ̃ ◦ ζ̃ ◦ ρ. Therefore,
we get the required commutativity of diagram (327).
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Proposition 100. Assume z, z′ ∈ Z such that σ
(6)
P ◦ µ(z) = µ(z′). Then σ

(3)
P ◦ µ̃ ◦ ζ̃(z) = µ̃ ◦ ζ̃(z′) and

σ
(3)
P ◦ µ̃ ◦ ζ̃ ◦ ρ(z) = µ̃ ◦ ζ̃ ◦ ρ(z′).

Proof. Applying ψ, we obtain that ψ ◦ σ(6)
P ◦ µ(z) = ψ ◦ µ(z′). Further, using relation σ

(3)
P ◦ ψ = ψ ◦ σ(6)

P , we

get that σ
(3)
P ◦ ψ ◦ µ(z) = ψ ◦ µ(z′). Using commutativity of diagram (327), we get the required statement.

Analogously, we obtain σ
(3)
P ◦ µ̃ ◦ ζ̃ ◦ ρ(z) = µ̃ ◦ ζ̃ ◦ ρ(z′).

As we know, µ̃ : Z̃ → Y (3)×Y Y (3) is a birational morphism and image µ̃(Z̃) is σ
(3)
P -invariant. Thus, we can

define birational involution µ̃−1 ◦ σ(3)
P ◦ µ̃ ∈ Bir(Z̃). Using birational morphism: ζ̃ : Z → Z̃, we get birational

involution σ′ = ζ̃−1 ◦ µ̃−1 ◦ σ(3)
P ◦ µ̃ ◦ ζ̃ ∈ Bir(Z). Also, we can define involution ρ−1 ◦ σ′ ◦ ρ ∈ Bir(Z).

Proposition 101. Morphism σ′ ◦ ρ−1 ◦ σ′ ◦ ρ ∈ Bir(Z) has finite order.

Proof. Note the following properties of morphism: Π ◦ ζ̃ : Z → Y (2)× Y (2): involution ρ acts on fibres of the

morphism: Π ◦ ζ̃. Let us prove that Π ◦ σ′ = Π. Actually, we can define involution σP on Y (2)× Y (2) by the
rule: P 7→ 1 − P, qi 7→ qi, i = 1, 2, 5, 6. It is easy that natural morphism pY : Y (3) ×Y Y (3) → Y (2) × Y (2)

satisfies to relation: pY ◦ σ(3)
P = σP ◦ pY . Also, we have the following commutative diagram:

Y (3)×Y Y (3)

pY

��

Z
ζ̃ // Z̃

µ̃
99sssssssssss

Π

%%KKKKKKKKKKK

Y (2)× Y (2)

(328)

Further, Π◦ ζ̃ ◦σ′ = pY ◦ µ̃◦ ζ̃ ◦σ′ = pY ◦σ(3)
P ◦ µ̃◦ ζ̃ = σP ◦Π◦ ζ̃. Study action of involution σP on Y (2)×Y (2).

As we know, Y (2) × Y (2) = M6(< P ; q1, q2 >) ×M6(< P ; q5, q6 >) ∼= F [TrPq1Pq2,TrPq5Pq6]. One can
calculate: σP (TrPq1Pq2) = Tr(1 − P )q1(1 − P )q2 = TrPq1Pq2. Analogously, σP (TrPq5Pq6) = TrPq5Pq6 i.e.

σP acts on Y (2)× Y (2) trivially. Thus, Π ◦ ζ̃ ◦ σ′ = Π ◦ ζ̃. Therefore, involutions σ′ and ρ act on the fibres of

the morphism: Π ◦ ζ̃ : Z → Y (2)× Y (2). Since general fibres of Π are surfaces of general type and birationality

of ζ̃, we obtain that general fibres of Π ◦ ζ̃ are surfaces of general type too. Recall the following property of
surface of general type:

Proposition 102. (cf.??) Let S be a surface of general type. Assume ν : S → S′ be a birational morphism,
where S′ is a minimal model. Then we have isomorphism: ν ◦Bir(S)◦ν−1 ∼= Aut(S′). Also, there is a constant
c such that |Bir(S)| = |Aut(S′)| ≤ c ·K2

S′ .

Therefore, group generated by ρ, σ′ is finite, and hence, birational automorphism σ′ ◦ ρ−1 ◦ σ′ ◦ ρ of Z has
finite order.

Let us formulate the following useful proposition:

Proposition 103. We have the following relation for birational involutions σ′ and ρ: σ′ ◦ ρ = ρ ◦ σ′.

Proof. See appendix.

Corollary 104. Involution σ′ commutes with S6 acting by permutations of qi, i = 1, ..., 6.

Proof. By proposition 103, σ′ commutes with ρ = (34). By construction, σ′ commutes with S3 × S3,
where S3’s act by permutations of qi, i = 1, 2, 3 and qi, i = 4, 5, 6 respectively. Thus, σ′ commutes with
(12), (23), (34), (45), (56), and hence with S6.

Let us prove the following important proposition:
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Proposition 105. Image φ1(X(3, 6)) = µ(Z) ⊂ Y (6) is a σ
(6)
P -invariant and µ−1 ◦ σ(6)

P ◦ µ = σ′.

Proof. Recall that we proved early that there are birational immersion: µ̃ ◦ ζ̃ : Z → Y (3) ×Y Y (3). It means

that there is open subvariety U ⊂ Z such that restriction µ̃ ◦ ζ̃|U : U → Y (3) ×Y Y (3) is an immersion.
Using commutativity of the upper triangle of the diagram (327), we get that restriction µ|U : U → Y (6) is an

immersion too. Consider intersection V = ∩ρ1∈S6ρ1(U) - open subvariety of Z. It is clear that µ̃ ◦ ζ̃ ◦ ρ1|V :
V → Y (3)×Y Y (3), µ|V : V → Y (6) are immersions. Recall following properties:

• for any v ∈ V there is v′ ∈ V such that σ
(3)
P ◦ µ̃ ◦ ζ̃(v) = µ̃ ◦ ζ̃(v′), i.e. σ′(v) = v′.

• µ ◦ ρ1 = ρ1 ◦ µ for any ρ1 ∈ S6.

• ψ ◦ σ(6)
P = σ

(3)
P ◦ ψ.

• σ(3)
P ◦ µ̃ ◦ ζ̃ ◦ ρ1(v) = µ̃ ◦ ζ̃ ◦ ρ1(v′) = µ̃ ◦ ζ̃ ◦ ρ1 ◦ σ′(v).

Consider morphisms:
∏
µ̃ =

∏
ρ1∈S6

µ̃ ◦ ζ̃ ◦ ρ1 : V →
∏
ρ1∈S6

Y (3) ×Y Y (3) and
∏
ψ =

∏
ρ∈S6

ψ ◦ ρ1 : Y (6) →∏
ρ1∈S6

Y (3)×Y Y (3). It is easy that the following diagram:

V
µ //∏
µ̃

''OOOOOOOOOOOOO Y (6)

∏
ψ

��∏
ρ1∈S6

Y (3)×Y Y (3)

(329)

As we know from ??, morphism
∏
ψ is a birational immersion. It is trivial that restriction of

∏
µ̃ to V is an

immersion. Hence, restriction of
∏
ψ ◦µ to V is an immersion. Consider point

∏
ψ̃ ◦µ(v), v ∈ V . We will write

point
∏
ψ̃◦µ(v) in the following manner:

∏
ψ̃◦µ(v) = (ψ◦ρ1 ◦µ(v))ρ1∈S6 . Let us prove that σ

(6)
P ◦µ(v) = µ(v′).

Commutativity of σ
(3)
P and S6 means that σ

(3)
P ◦

∏
µ̃(v) = (σ

(3)
P ◦µ̃◦ ζ̃ ◦ρ1(v))ρ1∈S6

= (µ̃◦ ζ̃ ◦ρ1◦σ′(v))ρ1∈S6
=

(µ̃ ◦ ζ̃ ◦ ρ1(v′))ρ1∈S6
=
∏
µ̃(v′). Thus,

σ
(3)
P ◦

∏
µ̃(v) =

∏
µ̃(v′) =

∏
ψ̃(µ(v′)) (330)

Further, using commutativity of diagram (329), we obtain that σ
(3)
P ◦

∏
µ̃(v) = σ

(3)
P ◦

∏
ψ̃ ◦ µ(v) =

(σ
(3)
P ◦ ψ ◦ ρ1 ◦ µ(v))ρ1∈S6

= (ψ ◦ σ(6)
P ◦ ρ1 ◦ µ(v))ρ1∈S6

. Using commutativity of σ
(6)
P and S6, we get that

(ψ ◦ σ(6)
P ◦ ρ1 ◦ µ(v))ρ1∈S6 = (ψ ◦ ρ1 ◦ σ(6)

P ◦ µ(v))ρ1∈S6 =
∏
ψ̃(σ

(6)
P ◦ µ(v)). Using (330), we get that∏

ψ̃(σ
(6)
P ◦ µ(v)) =

∏
ψ̃(µ(v′)). Since

∏
ψ̃ is an immersion, we get that σ

(6)
P ◦ µ(v) = µ(v′). Therefore, we

get that for any v there is v′ such that σ
(6)
P ◦ µ(v) = µ(v′), i.e. image µ(V ) is σ

(6)
P - invariant. Also, we get the

following identity: µ−1 ◦ σ(6)
P ◦ µ = σ′.

10 Appendix A: varieties E1(f
′
6) and E2(f

′
6).

In this section we will calculate dimensions of E1(f ′6) and E2(f ′6).
Let us calculate dimension of E1(f ′6). Applying results of subsection 6.3, we get that there is a filtration:

E
(2)
1 (f ′6) ⊂ E(1)

1 (f ′6) = E1(f ′6). As we know from proposition 52, we have the following immersion:

E
(1)
1 (f ′6) ⊂

⋃
θ

C(θ), (331)

where θ runs over all partitions of {1, 2, 3} into union of two non-intersecting subsets. Without loss of generality,
assume that θ = {1} ∪ {2, 3}. Thus, C(θ) is defined by equations:

1 + z22 + z23 = 0, 1 +
1

z22
+

1

z23
= 0, 1 + z32 + z33 = 0, 1 +

1

z32
+

1

z33
= 0 (332)

and the same system of equations for y22, y23, y32, y33. Let us formulate the following useful evident lemma:
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Lemma 106. System of equation:

1 + a+ b = 0, 1 +
1

a
+

1

b
= 0 (333)

has two solutions: (ε, ε2) and (ε2, ε), where ε is a 3-th primitive root of unity.

Using this lemma, we get that there are only finite points satisfying to system (332).

In the case E
(2)
1 (f ′6), we have the following system:

1+z22 +z23 = 0, 1+
1

z22
+

1

z23
= 0, 1+z32 +z33 = 0, 1+

1

z32
+

1

z33
= 0, 1+

z22

z32
+
z23

z33
= 0, 1+

z32

z22
+
z33

z23
= 0 (334)

and the same system for y’s.
We get that following proposition:

Proposition 107. Subvariety E1 consists of finite set of points.

Further, consider subvariety E2(f ′6). Without loss of generality, consider the case θ : {1, 2, 3} = 1 ∪ 2, 3. It
can be shown in usual way that there are 4 θ-maximal subquivers of QΓ[3]: subquivers Q1 and Q2 have two
l.c.c. with ordering: {1} > {2, 3} and {1} < {2, 3} respectively. Subquivers Q3 and Q4 have three l.c.c. with
ordering: {2} > {1} > {3} and {3} > {1} > {2} respectively.

2 3

1
�
�
�
�
�
��

A
A
A
A
A
AU

subquiver Q1

2 3

1

�
�
�
�
�
��

A
A
A
A
A
AK

subquiver Q2

2 3

1

�
�
�
�
�
��

-

A
A
A
A
A
AU

subquiver Q3

2 3

1

A
A
A
A
A
AK

�

�
�
�
�
�
��

subquiver Q4

It is easy that morphisms si, i = 1, 2 are isomorphisms and hence, Di(θ) = D′i(θ), i = 1, 2. Components
(H∗1 )−1M(Q1) = (H∗1 ◦ s1)−1M(Q1) and (H∗1 )−1M(Q2) are defined by equations:

1 + z2,2 + z2,3 = 0, 1 + z3,2 + z3,3 = 0 (335)

and

1 +
1

z2,2
+

1

z2,3
= 0, 1 +

1

z3,2
+

1

z3,3
= 0 (336)

respectively. Also, components (H∗1 )−1M(Q3) and (H∗1 )−1M(Q4) are given by equations:

1 +
1

z2,2
+

1

z2,3
= 0, 1 + z3,2 + z3,3 = 0, 1 +

z3,2

z2,2
+
z3,3

z2,3
= 0 (337)

and

1 +
1

z3,2
+

1

z3,3
= 0, 1 +

z2,2

z3,2
+
z2,3

z3,3
= 0, 1 + z2,2 + z2,3 = 0 (338)

respectively. It is easy that dimF (H∗1 )−1M(Q1) = dimF (H∗1 )−1M(Q2) = 2,dimF (H∗1 )−1M(Q3) =
dimF (H∗1 )−1M(Q4) = 1.

We have similar description of components for D2(θ). Denote corresponding components of D2(θ) by M̂(Q1),
M̂(Q2), M̂(Q3) and M̂(Q4). Consider components M(Q1) and M(Q2) of D1(θ). Firstly, let us consider varieties
M(Qi) ×Y (3) M̂(Qj), i, j = 1, 2. Study subvariety M(Q1) ×Y (3) M̂(Q2) ⊂ X(3, 3) ×Y (3) X(3, 3). We have the
following equations for this subvariety: equations (335), equations of type (336) over y’s:

1 +
1

y2,2
+

1

y2,3
= 0, 1 +

1

y3,2
+

1

y3,3
= 0 (339)
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and
(1 +

z2,2

z3,2
+
z2,3

z3,3
)(1 +

z3,2

z2,2
+
z3,3

z2,3
) = (1 +

y2,2

y3,2
+
y2,3

y3,3
)(1 +

y3,2

y2,2
+
y3,3

y2,3
) (340)

Expressing z2,3 and z3,3 in terms of z2,2 and z3,2 respectively, we get that M(Q1) is an open subvariety of (F ∗)2.

Analogous statement for M̂(Q2) is true. One can show that equation (340) is not trivial. Thus, we obtain
that dimFM(Q1) ×Y (3) M̂(Q2) = 3. One can consider cases M(Qi) ×Y (3) M̂(Qj), (i, j) = (1, 1); (2, 1); (2, 2)

analogously. It is easy that dimFM(Qi)×Y (3) D2(θ) ≤ 3, i = 3, 4 and dimFD1(θ)×Y (3) M̂(Qj) ≤ 3, j = 3, 4.
Therefore, we obtain the following proposition:

Proposition 108. Dimension of any component of E2(f ′6) is less or equal to 3.

11 Appendix B: Varieties E1(f6) and E2(f6).

11.1 Variety E1(f6).

In this section we will study E1 for morphism f6.
Firstly, let us calculate dimension E1. As we know from results of subsection 53, we have the following

filtration of E1:
E

(2)
1 (f6) ⊂ E(1)

1 (f6) = E1(f6). (341)

Recall that we have to consider partitions of {1, ..., 6} onto non-intersecting subsets I1, ..., Is+1 with condition
|Ij | ≥ 2 for all j = 1, ..., s+ 1. Thus, s+ 1 ≤ 3 and we have the following cases:

• partition: {1, ..., 6} = I1 ∪ I2 and |I1| = 2, |I2| = 4.

• partition: {1, ..., 6} = I1 ∪ I2 and |I1| = |I2| = 3.

• partition: {1, ..., 6} = I1 ∪ I2 ∪ I3 and |I1| = |I2| = |I3| = 2.

Third case corresponds to E
(2)
1 (f6). It is easy that third case is a partial case of first one. Consider the first

case. Without loss of generality, we can consider partition θ1 = {1, 2} ∪ {3, 4, 5, 6}. Let us calculate dimension
of C(θ1). Let us write defining equations of C ′(θ1) = (F ∗)10 ×Y (6) (F ∗)10:

1 + z32 + z33 = 0, 1 +
1

z32
+

1

z33
= 0, 1 + z42 + z43 = 0, 1 +

1

z42
+

1

z43
= 0, (342)

1 + z52 + z53 = 0, 1 +
1

z52
+

1

z53
= 0, 1 + z62 + z63 = 0, 1 +

1

z62
+

1

z63
= 0 (343)

1 +
z32

z22
+
z33

z23
= 0, 1 +

z22

z32
+
z23

z33
= 0, 1 +

z42

z22
+
z43

z23
= 0, 1 +

z22

z42
+
z23

z43
= 0, (344)

1 +
z52

z22
+
z53

z23
= 0, 1 +

z22

z52
+
z23

z53
= 0, 1 +

z62

z62
+
z63

z23
= 0, 1 +

z22

z62
+
z23

z63
= 0, (345)

Also, we have analogous system for yij . Further, let us calculate C(θ) = S−1(C ′(θ)). For this purpose, recall
the equations defining X(3, 6):

1 + z22 + z32 + z42 + z52 + z62 = 0, 1 +
1

z22
+

1

z32
+

1

z42
+

1

z52
+

1

z62
= 0 (346)

1 + z23 + z33 + z43 + z53 + z63 = 0, 1 +
1

z23
+

1

z33
+

1

z43
+

1

z53
+

1

z63
= 0 (347)

1 +
z22

z23
+
z32

z33
+
z42

z43
+
z52

z53
+
z62

z63
= 0, 1 +

z23

z22
+
z33

z32
+
z43

z42
+
z53

z52
+
z63

z62
= 0 (348)

We have similar system over yij . All these equations define C(θ1) as subvariety of (F ∗)10 × (F ∗)10. Using
lemma 106, we get that
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Proposition 109. C(θ1) consists of finite set of points. And hence, component of E1(f6) which corresponds to
the first case, consists of finite set of points.

Consider the second case. Without loss of generality, consider the following partition: θ2 = {1, ..., 6} =
{1, 2, 3} ∪ {4, 5, 6}. We have the following system of equations:

1 + z42 + z43 = 0, 1 +
1

z42
+

1

z43
= 0, 1 + z52 + z53 = 0, 1 +

1

z52
+

1

z53
= 0, (349)

1 + z62 + z63 = 0, 1 +
1

z62
+

1

z63
= 0, 1 +

z42

z22
+
z43

z23
= 0, 1 +

z22

z42
+
z23

z43
= 0, (350)

1 +
z52

z22
+
z53

z23
= 0, 1 +

z22

z52
+
z23

z53
= 0, 1 +

z62

z22
+
z63

z23
= 0, 1 +

z22

z62
+
z23

z63
= 0, (351)

1 +
z42

z32
+
z43

z33
= 0, 1 +

z32

z42
+
z33

z43
= 0, 1 +

z52

z32
+
z53

z33
= 0, 1 +

z32

z52
+
z33

z53
= 0, (352)

1 +
z62

z32
+
z63

z33
= 0, 1 +

z32

z62
+
z33

z63
= 0. (353)

We have the same system for yij . Also, we have the system of type (346), (347), (348) for zij and yij . Using
lemma 106, one can prove that

Proposition 110. C(θ2) consists of finite set of points. And hence, component of E1(f6) which corresponds to
the second case, consists of finite set of points.

Therefore, we have the following:

Proposition 111. Variety E1 consists of finite set of points.

11.2 Variety E2 for M6B6,6 and fibred product.

In this subsection we will study E2 for morphism f6.
We have to consider the following two cases:

• {1, ..., 6} = I1 ∪ I2, |I1| = 2, |I2| = 4.

• {1, ..., 6} = I1 ∪ I2, |I1| = |I2| = 3.

Consider the first case. Without loss of generality, fix the following partition: θ3 : {1, ..., 6} =
{1, 2} ∪ {3, 4, 5, 6}.

Proposition 112. Maximal θ-subquivers have the following view:

1

2

3

4

5

6

-
Q
Q
Qs

�
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�
�
�
�3

�
�
�
�
�
��

-�
�
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A
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Q
Q
Q
Q
Q
Qs

subquiver Q1

1

2

3

4

5

6

�
�

�+
�
�
�
�
�
��

�
�

�
�
�

�
�+� Q

Q
Q
Q

Q
Qk

A
A
A
A
A
AK

Q
Q

Qk

subquiver Q2

1

2

i3

i4

i5

i6

�
�
�+

�
�
�
�
�
��

�
�

�
�

�
�
�+
Q
Q
Qs

-

A
A
A
A
A
AU

Q
Q
Q
Q
Q
Qs

?

A
A
A
A
A
AU?

�
�
�
�
�
��

subquiver Q3

Proof. As we know, any l.c.c. of the maximal θ-subquiver Q has at least two vertices. Thus, we have two cases:

• Q has 2 l.c.c. with 2 and 4 vertices,

• Q has 3 l.c.c., any l.c.c. has 2 vertices.

Considering of different ordering on the set of l.c.c. gives us the proof.
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Subquiver Qi, i = 1, 2 has two l.c.c. Also, there are orderings of l.c.c.: {1, 2} > {3, 4, 5, 6} of Q1 and
{1, 2} < {3, 4, 5, 6} of Q2. Subquiver Q3 have three l.c.c. with ordering: {i3, i4} > {1, 2} > {i5, i6}.

Subvarieties M(Q1) and M(Q2) of D′′1 (θ) are defined by equations:

1 + z3,2 + z3,3 = 0, 1 + z4,2 + z4,3 = 0, 1 + z5,2 + z5,3 = 0, 1 + z6,2 + z6,3 = 0, (354)

1 +
z3,2

z2,2
+
z3,3

z2,3
= 0, 1 +

z4,2

z2,2
+
z4,3

z2,3
= 0, 1 +

z5,2

z2,2
+
z5,3

z2,3
= 0, 1 +

z6,2

z2,2
+
z6,3

z2,3
= 0, (355)

and

1 +
1

z3,2
+

1

z3,3
= 0, 1 +

1

z4,2
+

1

z4,3
= 0, 1 +

1

z5,2
+

1

z5,3
= 0, 1 +

1

z6,2
+

1

z6,3
= 0, (356)

1 +
z2,2

z3,2
+
z2,3

z3,3
= 0, 1 +

z2,2

z4,2
+
z2,3

z4,3
= 0, 1 +

z2,2

z5,2
+
z2,3

z5,3
= 0, 1 +

z2,2

z6,2
+
z2,3

z6,3
= 0 (357)

respectively.
Without loss of generality, assume that i3 = 3, i4 = 4, i5 = 5, i6 = 6. In this case, subvariety M(Q3) is given

by system of equations:

1 +
1

z3,2
+

1

z3,3
= 0, 1 +

1

z4,2
+

1

z4,3
= 0, 1 +

z2,2

z3,2
+
z2,3

z3,3
= 0, 1 +

z2,2

z4,2
+
z2,3

z4,3
= 0, (358)

1 + z5,2 + z5,3 = 0, 1 + z6,2 + z6,3 = 0, 1 +
z5,2

z2,2
+
z5,3

z2,3
= 0, 1 +

z6,2

z2,2
+
z6,3

z2,3
= 0, (359)

1 +
z5,2

z3,2
+
z5,3

z3,3
= 0, 1 +

z6,2

z3,2
+
z6,3

z3,3
= 0, 1 +

z5,2

z4,2
+
z5,3

z4,3
= 0, 1 +

z6,2

z4,2
+
z6,3

z4,3
= 0. (360)

Consider subvariety M(Q1). Let us formulate the following useful lemma:

Lemma 113. Consider system of equations over a1, a2:

1 + a1 + a2 = 0, 1 +
a1

x1
+
a2

x2
= 0, ai, xi ∈ F ∗ (361)

• If (x1 6= 1 and x2 6= 1 and x1 6= x2, then this system has unique solution,

• if (x1, x2) = (1, 1), then solution of system has the following view: (a1,−1− a1), a1 6= 0,−1,

• if x1 = x2 6= 1 or x1 = 1 or x2 = 1, then system has no solution.

Proof. Straightforward.

Corollary 114. We have the similar statement for system:

1 +
1

a1
+

1

a2
= 0, 1 +

x1

a1
+
x2

a2
= 0 (362)

Consider natural morphism: p : S(Q1) → (F ∗)2
z2,2,z2,3 . Using this lemma, we obtain that if z2,2 6= z2,3,

then preimage of p over (z2,2, z2,3) is unique and preimage of p over (1, 1) is 4-dimensional. Thus, M(Q1) has
two-dimensional component M (2)(Q1) and four-dimensional component M (4)(Q1). Consider two-dimensional
component M (2)(Q1). Using lemma, we get the following equations for (H∗1 )−1M (2)(Q1):

z3,2 = z4,2 = z5,2 = z6,2, z3,3 = z4,3 = z5,3 = z6,3. (363)

Consider (H∗1 ◦ s1)−1(M (2)(Q1)). Using equations (346),(347),(348), we get the following system of equations:

1 + z2,2 + 4z3,2 = 0, 1 +
1

z2,2
+

4

z3,2
= 0, 1 + z2,3 + 4z3,3 = 0, 1 +

1

z2,3
+

4

z3,3
= 0, (364)
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1 +
z2,3

z2,2
+ 4

z3,3

z3,2
= 0, 1 +

z2,2

z2,3
+ 4

z3,2

z3,3
= 0. (365)

One can check that this system has no solutions. Thus, (H∗1 ◦ s1)−1M (2)(Q1) = ∅.
Consider four-dimensional component M (4)(Q1). In this case, we have relation for (H∗1 )−1M (4)(Q1): z2,2 =

z2,3 = 1. Using equations (346),(347),(348), we get the following system of equations for (H∗1 ◦ s1)−1M (4)(Q1):

2 + z3,2 + z4,2 + z5,2 + z6,2 = 0, 2 +
1

z3,2
+

1

z4,2
+

1

z5,2
+

1

z6,2
= 0, (366)

2 + z3,3 + z4,3 + z5,3 + z6,3 = 0, 2 +
1

z3,3
+

1

z4,3
+

1

z5,3
+

1

z6,3
= 0, (367)

2 +
z3,2

z3,3
+
z4,2

z4,3
+
z5,2

z5,3
+
z6,2

z6,3
= 0, 2 +

z3,3

z3,2
+
z4,3

z4,2
+
z5,3

z5,2
+
z6,3

z6,2
= 0 (368)

and
1 + z3,2 + z3,3 = 0, 1 + z4,2 + z4,3 = 0, 1 + z5,2 + z5,3 = 0, 1 + z6,2 + z6,3 = 0. (369)

Show that equations (367) and (368) follow from (369) and (366). Denote by S ⊂ (F ∗)4 the surface defined by
equations (366). For this purpose, let us prove that transformation zi,2 7→ −1− zi,2, i = 3, 4, 5, 6 is a birational
involution of S. It is easy that 2 + (−1−z3,2) + ...+ (−1−z6,2) = −2−z3,2− ...−z6,2 = 0. We get the following
second equation from (366):

2− 1

1 + z3,2
− ...− 1

1 + z6,2

Transforming this expression, we obtain:

2(1 + z3,2)...(1 + z6,2)− (1 + z3,2)(1 + z4,2)(1 + z5,2)− ...− (1 + z4,2)(1 + z5,2)(1 + z6,2) =

z3,2z4,2z5,2z6,2(2 +
1

z3,2
+

1

z4,2
+

1

z5,2
+

1

z6,2
)− (2 + z3,2 + z4,2 + z5,2 + z6,2) = 0.

Also, consider equation: 1 + zi,2 + zi,3 = 0, i = 3, 4, 5, 6. Transform it as follows: 1 +
zi,2
zi,3

+ 1
zi,3

= 0, i = 3, 4, 5, 6.

We get that
zi,2
zi,3

= −1− 1
zi,3

, i = 3, 4, 5, 6. Thus,

2 +
z3,2

z3,3
+ ...+

z6,2

z6,3
= 2 + (−1− 1

z3,3
) + ...(−1− 1

z6,3
) = −2− 1

z3,3
− ...− 1

z6,3
= 0.

One can prove that 2 +
z3,3
z3,2

+ ...+
z6,3
z6,2

= 0 analogously. Therefore, we have proved the following proposition:

Proposition 115. (H∗1 ◦ s1)−1(M(Q1)) is birationally isomorphic to surface S ⊂ (F ∗)4 defined by equations
(366).

This surface is a hessian of nonsingular cubic surface ([?]). Consider natural projection: p1 : S → (F ∗)2
z3,2,z4,2 .

It is easy that degree of p1 is 2.

Lemma 116. • If (z3,2, z4,2) satisfy to 2 + z3,2 + z4,2 6= 0, 2 + 1
z3,2

+ 1
z4,2
6= 0, then |p−1

1 (z3,2, z4,2)| is 1 or 2,

• if (z3,2, z4,2) satisfy to 2 + z3,2 + z4,2 = 0, 2 + 1
z3,2

+ 1
z4,2
6= 0 or 2 + z3,2 + z4,2 6= 0, 2 + 1

z3,2
+ 1

z4,2
= 0, then

p−1
1 (z3,2, z4,2) = ∅,

• if (z3,2, z4,2) satisfy to 2 + z3,2 + z4,2 = 0, 2 + 1
z3,2

+ 1
z4,2

= 0, then dimF p
−1
1 (z3,2, z4,2) = 1.

Proof. Straightforward.

Proposition 117. Surface S is an irreducible K3 - surface.
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Proof. Assume that S is reducible. Since S is defined by two equations in (F ∗)4, then dimension of every
component is at least 2. Using lemma 116, we get that dimension of every component is 2. Consider natural
compactification S̃ ⊂ P4 of the surface S. It is easy that if S̃ is reducible, then singular locus of S̃ has dimension
at least 1. It can be checked in usual way that singular locus of S̃ is finite set. Contradiction. Thus, S is an
irreducible surface. Further, one can show that singular locus of S̃ consists of ordinary double points. It is
well-known that quartic surface with isolated double points is a K3 - surface.

Also, one can prove analogous results in the case of Q2.
Further, consider (H∗1 )−1M(Q3). Using corollary 114, we get that if (z2,2, z2,3) 6= (1, 1) and z2,2 6= z2,3,

then zi,2, zi,3, i = 3, 4, 5, 6 can be expressed as rational functions of z2,2, z2,3, and z3,2 = z4,2, z3,3 = z4,3, z5,2 =
z6,2, z5,3 = z6,3. Namely,

z3,2 = z4,2 =
z2,2 − z2,3

z2,3 − 1
, z5,2 = z6,2 =

z2,2(z2,3 − 1)

z2,2 − z2,3
, (370)

z3,3 = z4,3 = −z2,2 − z2,3

z2,2 − 1
, z5,3 = z6,3 = −z2,3(z2,2 − 1)

z2,2 − z2,3
. (371)

Also, we have the following transformation:

1 +
z5,2

z3,2
+
z5,3

z3,3
=
z2

2,2 − 6z2,2z2,3 + z2
2,3 + z2,2z

2
2,3 + z2,2 + z2,3 + z2,3z

2
2,2

(z2,2 − z2,3)2
= 0 (372)

Thus, (H∗1 )−1M(Q3) ⊂ D′1(θ) is a curve given by equation:

z2
2,2 − 6z2,2z2,3 + z2

2,3 + z2,2z
2
2,3 + z2,2 + z2,3 + z2,3z

2
2,2 = 0. (373)

Therefore,
dimF (H∗1 ◦ s1)−1M(Q3) ≤ 1. (374)

Remark.
It can be shown in usual way that (H∗1 )−1M(Q3) is an irreducible singular rational curve with singularity (1, 1).

It is clear that we have similar results for D2(θ). Denote by M̂(Q1), M̂(Q2) and M̂(Q3) components
of D2(θ) corresponding to maximal θ-subquivers Q1, Q2 and Q3. Using arguments similar to studying of
M(Qi), i = 1, 2, we get that components (H∗2 ◦ s2)−1(M̂(Qi)), i = 1, 2 are K3 surfaces. This K3 surface is given
by equations (366) in variables yi,2, i = 3, 4, 5, 6. Denote this surface by S′. Also, denote by p′1 the projection
S′ → (F ∗)2

y3,2,y4,2
We would like to prove that dimFE2(f6) ≤ 3. Since dimF (H∗1 ◦ s1)−1M(Q3) ≤ 1, we can

consider only subvarieties (H∗1 ◦ s1)−1M(Qi) ×Y (6) (H∗2 ◦ s2)−1M̂(Qj), i, j = 1, 2. Without loss of generality,

consider subvariety (H∗1 ◦ s1)−1M(Qi)×Y (6) (H∗2 ◦ s2)−1M̂(Qj) ⊂ X(3, 6)×Y (6) X(3, 6). Consider the following
composition of morphisms:

(H∗1 ◦ s1)−1M(Q1)×Y (6) (H∗2 ◦ s2)−1M̂(Q2)
⊆ // (H∗1 ◦ s1)−1M(Q1)× (H∗2 ◦ s2)−1M̂(Q2)

p1×p′1
��

(F ∗)2
z3,2,z4,2 × (F ∗)2

y3,2,y4,2

(375)

Show that (H∗1◦s1)−1M(Q1)×Y (6)(H
∗
2◦s2)−1M̂(Q2) does not coincide with (H∗1◦s1)−1M(Q1)×(H∗2◦s2)−1M̂(Q2).

Consider divisor of (F ∗)2
z3,2,z4,2 × (F ∗)2

y3,2,y4,2
given by equation:

(1 +
z3,2

z4,2
+
z3,3

z4,3
)(1 +

z4,2

z3,2
+
z4,3

z3,3
) = (1 +

y3,2

y4,2
+
y3,3

y4,3
)(1 +

y4,2

y3,2
+
y4,3

y3,3
), (376)

where z3,3 = −1− z3,2, z4,3 = −1− z4,2 (it follows from (354)), y3,3 = − y3,2

y3,2+1 , y4,3 = − y4,2

y4,2+1 (356). Thus, we
get:

(1 +
z3,2

z4,2
+

1 + z3,2

1 + z4,2
)(1 +

z4,2

z3,2
+

1 + z4,2

1 + z3,2
) = (1 +

y3,2

y4,2
+

1 + y3,2

1 + y4,2
)(1 +

y4,2

y3,2
+

1 + y4,2

1 + y3,2
). (377)
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Denote by T the divisor of (F ∗)2
z3,2,z4,2 × (F ∗)2

y3,2,y4,2
given by (377). It is easy that

p1 × p′1((H∗1 ◦ s1)−1M(Q1)×Y (6) (H∗2 ◦ s2)−1M̂(Q2)) ⊆ T. (378)

As we know (H∗1 ◦s1)−1M(Q1)×(H∗2 ◦s2)−1M̂(Q2) = S×S′ is an irreducible variety and p1×p′1 is dominant.
Thus, we get that dimF (H∗1 ◦s1)−1M(Q1)×Y (6) (H∗2 ◦s2)−1M̂(Q2) ≤ 3. Using similar arguments, one can show

that dimF (H∗1 ◦ s1)−1M(Qi)×Y (6) (H∗2 ◦ s2)−1M̂(Qj) ≤ 3, i, j = 1, 2. Therefore, we have proved the following
proposition:

Proposition 118. Dimension of any component of E2(f6) which corresponds to the first case, is less or equal
to 3.

Consider the second case. Without loss of generality, we can fix the partition θ : {1, 2, 3} ∪ {4, 5, 6}.

Proposition 119. There are only two maximal θ-subquivers:

1

2

3

4

5

6

-
Q
Q
Qs

�
�
�
�
�
�3
-

A
A
A
A
A
AU

Q
Q
Q
Q
Q
Qs

?

Q
Q
Qs

A
A
A
A
A
AU

subquiver Q1

1

2

3

4

5

6

� Q
Q

Q
Q

Q
Qk

A
A
A
A
A
AK

� Q
Q

Qk

�
�

�
�

�
�+

6

A
A
A
A
A
AK

Q
Q

Qk

subquiver Q2

Proof. Consider maximal θ-subquiver Q As we know, any l.c.c. of Q has at least two vertices. Thus, we have
only two l.c.c. and every l.c.c. has three vertices. Considering different ordering on the set of l.c.c. gives us the
proof.

One can show that (H∗1 )−1M(Q1) is given by equations:

1 + z4,2 + z4,3 = 0, 1 +
z4,2

z2,2
+
z4,3

z2,3
= 0, 1 +

z4,2

z3,2
+
z4,3

z3,3
= 0, (379)

1 + z5,2 + z5,3 = 0, 1 +
z5,2

z2,2
+
z5,3

z2,3
= 0, 1 +

z5,2

z3,2
+
z5,3

z3,3
= 0, (380)

1 + z6,2 + z6,3 = 0, 1 +
z6,2

z2,2
+
z6,3

z2,3
= 0, 1 +

z6,2

z3,2
+
z6,3

z3,3
= 0. (381)

(H∗1 )−1M(Q2) is defined by equations:

1 +
1

z4,2
+

1

z4,3
= 0, 1 +

z2,2

z4,2
+
z2,3

z4,3
= 0, 1 +

z3,2

z4,2
+
z3,3

z4,3
= 0, (382)

1 +
1

z5,2
+

1

z5,3
= 0, 1 +

z2,2

z5,2
+
z2,3

z5,3
= 0, 1 +

z3,2

z5,2
+
z3,3

z5,3
= 0, (383)

1 +
1

z6,2
+

1

z6,3
= 0, 1 +

z2,2

z6,2
+
z2,3

z6,3
= 0, 1 +

z3,2

z6,2
+
z3,3

z6,3
= 0. (384)

Prove the following useful lemma:

Lemma 120. Consider the following system of equations over variables a1, a2:

1 + a1 + a2 = 0, 1 +
a1

x1
+
a2

x2
= 0, 1 +

a1

y1
+
a2

y2
= 0, ai, xi, yi ∈ F ∗. (385)

Then we have the following cases:
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• if

rank

1 1 1
1 1

x1

1
x2

1 1
y1

1
y2

 = 2, (386)

then system (385) has at more one solution

• if x1 = x2 = y1 = y2 = 1(i.e. rank of matrix is 1), then system (385) has the following solutions:
(a1, a2 = −1− a1), a1 6= 0,−1.

• if

det

1 1 1
1 1

x1

1
x2

1 1
y1

1
y2

 6= 0, (387)

then system (385) has no solution.

Proof. Straightforward.

Corollary 121. Consider system over variables a1, a2:

1 +
1

a1
+

1

a2
= 0, 1 +

x1

a1
+
x2

a2
= 0, 1 +

y1

a1
+
y2

a2
= 0. (388)

Then we have the following statements:

• if

rank

1 1 1
1 x1 x2

1 y1 y2

 = 2, (389)

then system (388) has at more one solution

• if x1 = x2 = y1 = y2 = 1(i.e. rank of matrix is 1), then system (388) has the following solutions:
(a1, a2 = − a1

1+a1
), a1 6= 0,−1.

• if

det

1 1 1
1 x1 x2

1 y1 y2

 6= 0, (390)

then system (388) has no solution.

For studying (H∗1 ◦ s1)−1M(Q1), we will study two cases:

•

rank

1 1 1
1 x1 x2

1 y1 y2

 = 2, (391)

• x1 = x2 = y1 = y2 = 1

Consider the first case. In this case, we have the following relations: z4,2 = z5,2 = z6,2, z4,3 = z5,3 = z6,3. We
have the following system of equations for (H∗1 ◦ s1)−1M(Q1):

1 + z2,2 + z3,2 + 3z4,2 = 0, 1 +
1

z2,2
+

1

z3,2
+

3

z4,2
= 0, (392)

1 + z2,3 + z3,3 + 3z4,3 = 0, 1 +
1

z2,3
+

1

z3,3
+

3

z4,3
= 0, (393)
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1 +
z2,3

z2,2
+
z3,3

z3,2
+ 3

z4,3

z4,2
= 0, 1 +

z2,2

z2,3
+
z3,2

z3,3
+ 3

z4,2

z4,3
= 0, (394)

and equations (382). Prove that this system has no solutions. One can check the following identity:

(z2,2 + z3,2)(
1

z2,3
+

1

z3,3
)(
z2,2

z2,3
+
z3,2

z3,3
) = (z2,3 + z3,3)(

1

z2,2
+

1

z3,2
)(
z2,3

z2,2
+
z3,3

z3,2
). (395)

Using this identity, we get the following equation:

(1 + 3z4,2)(1 +
3

z4,3
)(1 + 3

z4,3

z4,2
)− (1 + 3z4,3)(1 +

3

z4,2
)(1 + 3

z4,2

z4,3
) = 0 (396)

Simplifying this equation, we obtain the following three cases:

• z4,2 = 1,

• z4,3 = 1,

• z4,3 = z4,2.

Assume that z4,3 = 1. In this case, we get that z4,2 = −2, 1
z2,3

+ 1
z3,3

= −4, 1
z2,2

+ 1
z3,2

= 1
2 , 1− 2

z2,2
+ 1

z2,3
= 0

and 1− 2
z3,2

+ 1
z3,3

= 0. Summarizing two last equations, we get

0 = 2− 2(
1

z2,2
+

1

z3,2
) + (

1

z2,3
+

1

z3,3
) = 2− 2 · 1

2
+ (−4) = −3 (397)

Contradiction. Analogous arguments show that (H∗1 )−1M(Q1) = ∅ and (H∗1 )−1M(Q2) = ∅. Thus, we have
proved the following proposition:

Proposition 122. Component of E2(f6) corresponds to the second case, is empty.

Therefore, we have proved the following

Proposition 123. dimFE2(f6) ≤ 3.

12 Appendix C.

12.1 Local properties of standard orthogonal pair.

In this subsection we will construct point z0 ∈ Z such that σ′ ◦ ρ−1 ◦ σ′ ◦ ρ acts on the tangent space Tz0Z
trivially. This point corresponds to standard orthogonal pair up to permutation of rows.

Let us formulate conditions for point z0 ∈ Z allowing to deduce that σ′ ◦ρ−1 ◦σ′ ◦ρ acts on the tangent space
Tz0Z trivially. Firstly, let us formulate conditions for determination of action dσ′ on the tangent space Tz0Z.
Fix some point pt ∈ X(6, 6). Denote by z′, z′′ the images pr1(pt), pr1 ◦ σ(p)(pt) ∈ X(3, 6) and z0, z1 the image

of z′, z′′ under natural projection π : X(3, 6)→ Z. Then σ
(6)
P (µ(z0)) = µ(z1) ∈ µ(Z) and using proposition 100,

we get that σ
(3)
P ◦ µ̃ ◦ ζ̃(z0) = µ̃ ◦ ζ̃(z1). Thus, σ′(z0) = z1. Consider differential of σ′ at point z0. We have the

following formula:

dσ′|z0 = (dζ̃)−1 ◦ (dµ̃)−1 ◦ dσ
(3)
P ◦ dµ̃ ◦ dζ̃ : Tz0Z → Tz1Z. (398)

Therefore, for definition of dσ′ we need bijectivity of dζ̃ and injectivity of dµ̃. Recall that µ ◦ ζ(Z) = µ̃(Z̃) is

σ
(3)
P -invariant subvariety of Y (3) ×Y Y (3). It can be shown in usual way that dσ

(3)
P is an isomorphism. Thus,

dσ
(3)
P (Tµ̃◦ζ̃(z0)) = Tµ̃◦ζ̃(z1).

Note the following remarks.
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• Assume that dimFTz′X(3, 6) = dimFTζ(z′)X̃ = dimFTz1Z = dimTz0Z = 4, i.e. z′, ζ(z′), z1, π(z′) = z0 are

smooth points of X(3, 6), X̃, Z and Z̃ respectively. Using diagram (240), we obtain that dπ̃ ◦dζ = dζ̃ ◦dπ.

Thus, if dπ̃, dζ and dπ are isomorphism, then dζ̃ is isomorphism too.

• If point z′ ∈ X(3, 6) is smooth and stabilizer of z′ under action of S
(p)
3 is trivial, then point π(z′) = z0 ∈ Z

is smooth and map dπ is an isomorphism. Analogously, if point ζ(z′) ∈ X̃ is smooth and stabilizer of

ζ(z′) under action of S
(p)
3 is trivial, then point ζ̃(z0) is smooth and dπ̃ is an isomorphism.

• Using (240), we get the decomposition: dΦ = dµ̃ ◦ dπ̃. Thus, if dΦ is injective and dπ̃ is an isomorphism,
then dµ̃ is injective.

Thus, if we take non-singular point z′ ∈ X(3, 6) such that stabilizer St
S

(p)
3

(z′) = 1, dζ is an isomorphism,

dΦ is an immersion ,then dσ′ is well-defined morphism: Tz0Z → Tz1Z.
Firstly, let us check that morphism dζ is an isomorphism. For this purpose, let us describe the maps in

suitable coordinates. Morphism: (pr1, pr1 ◦ σ(p)) : X(6, 6) → X(3, 6) ×Y (6) X(3, 6) is birational. In terms of
matrices, this birational morphism means decomposition of matrix of size 6× 6 into two matrices of size 3× 6,
i.e. morphism: pr = (pr1, pr1 ◦ σ(p)) : X(6, 6) → X(3, 6) ×Y (6) X(3, 6) is defined in terms of matrices by the
following formula: 

1 1 ... 1
1 x11 ... x15

... ... ... ...
1 x51 ... x55

 7→ (


1 1 1
1 x11 x12

... ... ...
1 x51 x52

 ,


1 1 1
1 x14

x13

x15

x13

... ... ...
1 x54

x53

x55

x53

) (399)

In terms of matrices, birational morphism: ζ : X(3, 6) → X̃ = X(3, 3) ×Y (3) X(3, 3) means the decomposition
of matrix of type 3× 6 into two matrices of type 3× 3 in the following manner:

1 1 1
1 x11 x12

... ... ...
1 x51 x52

 7→ (

1 1 1
1 x11 x12

1 x21 x22

 ,

1 1 1
1 x41

x31

x42

x32

1 x51

x31

x52

x32

) (400)

Consider diagram (235). Recall that Y (3) is the subvariety of F 5 defined by equation ABC = αβ. Morphism
φ2 ◦ τ is defined by formulas:

A = (1 + x11 + x21)(1 +
1

x11
+

1

x21
) (401)

B = (1 + x12 + x22)(1 +
1

x12
+

1

x22
) (402)

C = (1 +
x11

x12
+
x21

x22
)(1 +

x12

x11
+
x22

x21
) (403)

α = (1 + x11 + x21)(1 +
1

x12
+

1

x22
)(1 +

x12

x11
+
x22

x21
) (404)

β = (1 +
1

x11
+

1

x21
)(1 + x12 + x22)(1 +

x11

x12
+
x21

x22
) (405)

We get the analogous formulas for x41

x31
, x51

x31
, x42

x32
, x52

x32
. Involution σ

(3)
P is defined by rule: σ

(3)
P : A 7→ A,B 7→

B,C 7→ C,α 7→ −α, β 7→ −β. Thus, for fixed point t = (t1, t2) ∈ X̃ = X(3, 3) ×Y (3) X(3, 3) such that

φ2 ◦ τ(t1) = σ
(3)
P ◦ φ2 ◦ τ(t2) = y ∈ Y (3) we have the following isomorphism:

Tt=(t1,t2)X̃ = Ker(dφ2 ◦ dτ,−dσ
(3)
P ◦ dφ2 ◦ dτ) : Tt1X(3, 3)⊕ Tt2X(3, 3)→ TyY (3) (406)
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Consider the point pt ∈ X(6, 6) given by matrix:

pt =


1 1 1 1 1 1
1 ε ε2 −1 ε4 ε5

1 −1 1 −1 1 −1
1 ε5 ε4 −1 ε2 ε
1 ε4 ε2 1 ε4 ε2

1 ε2 ε4 1 ε2 ε4

 , ε6 = 1 (407)

In this case,

z′ = pr1(pt) =


1 1 1
1 ε ε2

1 −1 1
1 ε5 ε4

1 ε4 ε2

1 ε2 ε4

 , z′′ = pr1 ◦ σ(p)(pt) =


1 1 1
1 ε ε2

1 −1 1
1 ε5 ε4

1 ε4 ε2

1 ε2 ε4

 = z′ (408)

Lemma 124. z′ is a smooth point of X(3, 6), i.e. dimFTz′X(3, 6) = 4.

Proof. As we know, X(3, 6) is a subvariety of (F ∗)10 defined by equations (243), (244), (245). Thus, tangent
space Tz′X(3, 6) is a kernel of matrix:

1 1 1 1 1 0 0 0 0 0
ε −1 ε5 ε ε5 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 ε5 −1 ε ε5 ε
ε4 1 ε2 ε4 ε2 1 1 1 −1 −1
−1 −1 −1 −1 −1 ε5 −1 ε ε2 ε4

 (409)

One can check that rank of this matrix is 6. Hence, z′ is a smooth point.

Recall that there are two-dimensional deformations of pt:

T (a, b) =


1 1 1 1 1 1
1 aε bε2 −1 aε4 bε5

1 −a b −1 a −b
1 aε5 bε4 −1 aε2 bε
1 ε4 ε2 1 ε4 ε2

1 ε2 ε4 1 ε2 ε4

 , T ′(c, d) =


1 1 1 1 1 1
1 cε ε2 −c ε4 cε5

1 −1 1 −1 1 −1
1 dε5 ε4 −d ε2 dε
1 cε4 ε2 c ε4 cε2

1 dε2 ε4 d ε2 dε4

 , (410)

where a, b, c, d ∈ F ∗. As we know, T (a, b) ∩ T ′(c, d) = pt in X(6, 6). It is well-known that dimFTptX(6, 6) = 4
(cf.??). One can check that we have the following isomorphism of tangent spaces:

TptT (a, b)⊕ TptT ′(c, d) = TptX(6, 6). (411)

Calculate pr1(T (a, b)) = t(a, b) ∈ X(3, 6), pr1 ◦ σ(p)(T (a, b)) = t(a, b) ∈ X(3, 6); pr1(T ′(c, d)) = t′(c, d) ∈
X(3, 6), pr1 ◦ σ(p)(T (c, d)) = t′( 1

c ,
1
d ) ∈ X(3, 6), where t(a, b) and t′(c, d) have the following type:

t(a, b) =


1 1 1
1 aε bε2

1 −a b
1 aε5 bε4

1 ε4 ε2

1 ε2 ε4

 , t′(c, d) =


1 1 1
1 cε ε2

1 −1 1
1 dε5 ε4

1 cε4 ε2

1 dε2 ε4

 (412)
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It is easy that t(a, b) ∩ t′(c, d) = z′ in X(3, 6). Also, we have the following isomorphism for tangent spaces:

Tz′t(a, b)⊕ Tz′t′(c, d) = Tz′X(3, 6). (413)

Calculate image of z′, t(a, b), t′(c, d) under morphism ζ:

ζ(t(a, b)) = (t1(a, b) =

1 1 1
1 aε bε2

1 −a b

 , t2(a, b) =

1 1 1
1 1

aε
1
bε2

1 − 1
a

1
b

) (414)

ζ(t′(c, d)) = (t′1(c, d) =

1 1 1
1 cε ε2

1 −1 1

 , t′2(c, d) =

1 1 1
1 c

dε ε4

1 −1 1

) (415)

ζ(z′) = (ζ(z′)1 = t1(1, 1) =

1 1 1
1 ε ε2

1 −1 1

 , ζ(z′)2 = t2(1, 1) =

1 1 1
1 ε5 ε4

1 −1 1

) (416)

Let us note the following property of point ζ(z′):

Lemma 125. ζ(z′) ∈ X̃ is a smooth point.

Proof. Let us calculate tangent space Tζ(z′)X̃. Let y ∈ Y (3) be the point φ2◦τ(ζ(z′)1) = σ
(3)
P ◦φ2◦τ(ζ(z′)2). As

we know from (406), we have to calculate dφ2 at point ζ(z′)1 and dσ
(3)
P ◦ dφ2 ◦ dτ at point ζ(z′)2. As we know,

X(3, 3) ∼= (F ∗)4 and Y (3) ⊂ F 5. It is easy that map: (dφ2◦τ,−dσ
(3)
P ◦dφ2◦dτ) : Tζ(z′)1

X(3, 3)⊕Tζ(z′)2
X(3, 3) =

F 8 → TyY (3) ⊂ F 5 is defined by matrix 8×5. Let us order variables as follows: rows correspond to coordinates
A,B,C, α, β, columns correspond to coordinates x11, x21, x12, x22,

x41

x31
, x51

x31
, x42

x32
, x52

x32
of X(3, 3) × X(3, 3). It is

easy that dσ
(3)
P : TyY (3)→ T

σ
(3)
P (y)

Y (3) is a matrix:
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 −1

 (417)

It can be shown in usual way that matrices of dφ2 ◦ dτ at points ζ(z′)1 and ζ(z′)2
0 ε2−1

ε 0 0

0 0 2(1− ε2) ε2−1
ε

0 − ε
2−1
ε 0 − ε

2−1
ε

0 0 2 2ε4

0 0 2ε2 2ε5

 ,


1−ε4
ε4 0 0 0

0 0 − ε
2−1
ε 0

− ε
2−1
ε 0 − ε

2−1
ε 0

0 0 −2ε2 −2
0 0 −2ε −2ε

 (418)

Therefore, matrix of (dφ2 ◦ dτ |ζ(z′)1
,−dσ

(3)
P ◦ dφ2 ◦ dτ |ζ(z′)2

) has the following view:
0 ε2−1

ε 0 0 − 1−ε4
ε4 0 0 0

0 0 2(1− ε2) ε2−1
ε 0 0 ε2−1

ε 0

0 − ε
2−1
ε 0 − ε

2−1
ε

ε2−1
ε 0 ε2−1

ε 0
0 0 2 2ε4 0 0 −2ε2 −2
0 0 2ε2 2ε5 0 0 −2ε −2ε

 (419)

One can see that rank of submatrix generated by second, third, forth and eighth columns is 4. Thus, point ζ(z′)
is a smooth.
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Using this lemma and some trivial computations, we get the following isomorphism of vector spaces:

Tζ(z′)X̃ = Tζ(z′)ζ(t(a, b))⊕ Tζ(z′)ζ(t′(c, d)). (420)

Thus, dζ|z′ is an isomorphism

Secondly, consider morphism: dΦ : Tζ(z′)X̃ → TΦ◦ζ(z′)Y (3) ×Y Y (3). As we know, morphism Φ is defined
by the rule: Φ(ζ(z′)) = (φ2(ζ(z′)1, φ2(ζ(z′)2)), where φ2 is given by formulas:

A = (1 + x11 + x12)(1 +
1

x11
+

1

x12
) (421)

B = (1 + x21 + x22)(1 +
1

x21
+

1

x22
) (422)

C = (1 +
x11

x21
+
x12

x22
)(1 +

x21

x11
+
x22

x12
) (423)

α = (1 +
1

x11
+

1

x12
)(1 + x21 + x22)(1 +

x11

x21
+
x12

x22
) (424)

β = (1 + x11 + x12)(1 +
1

x21
+

1

x22
)(1 +

x21

x11
+
x22

x12
). (425)

It is easy that Tζ(z′)X̃ ⊂ F 8 and TΦ◦ζ(z′)Y (3)×Y Y (3) ⊂ F 10. Therefore, dΦ is defined by matrix of type 8×10.
It is easy that dΦ|ζ(z′) = dφ2|ζ(z′)1

⊕ dφ2|ζ(z′)2
One can calculate that dφ2 at points ζ(z′)1 and ζ(z′)2 are given

by matrices: 
0 −2ε 0 0
0 0 0 0
0 0 0 0

2ε2 2ε5 −2 2ε4

2ε5 2 2 2ε5

 ,


0 2 ε

2−1
ε2 0 0

0 0 0 0
0 0 0 0

2ε4 −2ε4 −2 2ε2

−2ε4 2 2 −2ε4

 (426)

One can check that intersection of the kernel of matrix of dΦ|ζ(z′) = dφ2|ζ(z′)1
⊕ dφ2|ζ(z′)2

and Tζ(z′)X̃ is 0.

Thus, restriction of dΦ to Tζ(z′)X̃ is injective.

Thirdly, one can check that St
S

(p)
3

(z′) is trivial. Thus, Tz0Z is 4-dimensional. As we know, pr1◦σ(p)(pt) = z′.

And hence, µ(z0) = σ
(6)
P (µ(z0)). Using proposition 100, we get that σ

(3)
P ◦ µ̃ ◦ ζ̃(z0) = µ̃ ◦ ζ̃(z0). Therefore,

we obtain that dσ′(Tz0Z) = Tz0Z. It is easy that there is a decomposition of Tz0Z into direct sum of V+ =
dπ(Tζ(z′)ζ(t(a, b))) and V− = dπ(Tζ(z′)ζ(t′(c, d))). One can check that V+ and V− are subspaces corresponding
to eigenvalue 1 and −1 of dσ′ respectively.

Finally, consider involutions σ′ and ρ−1 ◦ σ′ ◦ ρ of Z. Using proposition 100, we get the following identities:

σ′(π(t(a, b))) = π(t(a, b)), σ′(π(t′(c, d))) = π(t′(
1

c
,

1

d
)) (427)

for σ′. And

ρ−1 ◦ σ′ ◦ ρ(π(t(a, b))) = π(t(a, b)), ρ−1 ◦ σ′ ◦ ρ(π(t′(c, d))) = π(t′(
1

c
,

1

d
)) (428)

Therefore, σ′ ◦ ρ−1 ◦σ′ ◦ ρ acts on π(t(a, b)) and π(t′(c, d)) trivially. And hence, d(σ′ ◦ ρ−1 ◦σ′ ◦ ρ) acts on Tz0Z
trivially. Thus, we have proved the following proposition:

Proposition 126. d(σ′ ◦ ρ−1 ◦ σ′ ◦ ρ) acts on Tz0Z trivially.

As we know from ??, morphism σ′ ◦ ρ−1 ◦ σ′ ◦ ρ has finite order. Let us formulate following well-known
property of morphism of finite order:

Proposition 127. (cf.??) Let γ be the automorphism of finite order of variety V . Assume that v ∈ V such
that γ(v) = v and dγ : Tv(V )→ Tv(V ) is identity linear map. Then γ is identity.
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