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1 Introduction

An orthogonal pair in a semisimple Lie algebra is a pair of Cartan subalgebras which are orthogonal with
respect to the Killing form. Description of orthogonal pairs in a given Lie algebra is an important step in
the classification of orthogonal decompositions, i.e. decompositions of the Lie algebra into the sum of Cartan
subalgebras pairwise orthogonal with respect to the Killing form.

Orthogonal decompositions come up firstly in the theory of integer lattices in the paper by Thompson [14].
Then the theory of such bases was substentially developed by mathematicians [9]. The classification problem
of orthogonal pairs in sl(n) is closely related to the classification of complex Hadamard matrices of order n [9],
[2].

Independently, a unitary version of orthogonal pairs appeared in quantum theory under the name of mutually
unbiased bases [2], objects of constant use in Quantum Information Theory, Quantum Tomography, etc. This
makes a link of the subject to various vibrant probelms in Mathematical Physics.

One of the reasons why mutually unbiased bases are important in practice is that they provide a crucial
mathematical tool that allows to transfer quantum information with minimal loss of it in the channel. Reliable
protocols in quantum channels, such as protocol BB84, are based on a choice of maximal number of mutually
unbiased bases in the relevant vector space of quantum states of transmited particles. Protocol BB84, which
utilize 3 such bases in a 2 dimensional vector space, allows us to significantly extend the distance between the
source and the receiver of quantum information. Clearly, big number of bases in a higher dimensional spaces is
of tremendous importance in constructing reliable protocols in quantum channels.

Also, in quantum teleportation, it is important to check the result of purity of teleportation by means of
Quantum Tomography. The Quantum Tomography with minimal error bar is again based on mutually unbiased
bases.

Despite of simple definition, the classification of orthogonal pairs is a very hard problem of algebraic geometric
origin. We will consider pairs in the Lie algebra si(n,C). According to the famous Winnie-the-Pooh conjecture
[7], orthotogonal decompositions are possible in this algebra when n is a power of prime number only. This
suggests the idea that the behavior of the objects under the study strongly depend on the arithmetic properties
of the number n. For n = 1,2, 3, there is a unique, up to natural symmetries, orthogonal pair. For n = 5, there
are three of them [8], [11], while, for n = 4 (the first non-prime integer), there is a one dimensional family of
pairs parameterized by a rational curve.

The first positive integer which is not a power of prime is n = 6. Winnie-the-Pooh conjecture is open even for
this case. Researchers in the quantum information theory have independently come to the unitary version of the
Winnie-the-Pooh conjecture, which claims non-existence of n + 1 mutually unbiased bases in the n-dimensional
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complex space [7] when n is not a power of prime. The case n = 6 is the subject of problem number 13 in the
popular list of problems in Quantum Information Theory [12].

In this paper we construct a 4-dimensional family of orthogonal pairs in Lie algebra si(6,C). The existence
of such a family was conjectured by the authors (unpublished) and independently by mathmatical physicists
[13],[10]. Despite of many efforts the proof of the existence of the family was not available until now.

In [1], we interpreted orthogonal pairs and decompositions as representations of the algebra B(T') for a
suitable choice of graph T" (see section 2). These algebras are so-called homotopes of the Poincare groupoids of
graph I' considered as a topological space. In the course of the prove of the main result of the paper, we present
various relevant algebras as free products of two algebras over a third one and explore these facts for describing
the moduli spaces of their representations.

The key point in the proof is, probably, section 7, where we consider the moduli spaces, X, of 6 dimensional
representations of B(I'), where I" is a full bipartite graph of length (3,3). We define 3 functions on X which
determine a map X — U, where U is a three dimensional affine space. The advantage of this map is that the
original problem of describing orthogonal pairs in sl(6,C) can be interpreted in terms of gluing four copies of
X in such a way that everything is basically done over . If A is a 6 x 6 matrix that conjugates one Cartan
subalgebra in the orthogonal pair to the other one, then this is about presenting this matrix in 4 blocks of
3 x 3 matrices. This reduces the problem to the study of the fibres of the above map. After factorization by
permutation group S3 X Ss, the fibre is actually isomorphic to (an open affine subset in) two disjoint copies of
an elliptic curve.

This leads us to study of the geometry of the elliptic fibration. Namely, we study the interplay of relevant
involutions acting on the elliptic fibres. This part is based on heavy use of algebraic geometry. Eventually, it
allows us to show the existence of the 4-dimensional family. Note that the proof is based on formula 174 which
probably needs more conceptual explanation than just verification.

In order to study the moduli space of representations of B(I'), we introduce more general algebra Pr(T").
This algebra is a homotope of the path algebra of the double quiver Qr constructed from graph I' by replacing
every edge of T' by two arrows with opposite orientation. Algebra Pr(T") is generated by idempotents x, labelled
by the vertices of . They satisfy relations which are weaker than those for algebra B(T"). The moduli spaces
of representations for Pr(T") is naturally fibered over the moduli of representations for B(T').

Orthogonal pairs in sl(n) correspond to representations for algebra B(I") where I" is the complete bipartite
graphs I'y, ,,. We study algebra Pr(T'y ,,) for complete bipartite graph I'y, ,,. We consider a quotient of Pr(T'; )
which we denote by Py ,,. We prove that representation spaces and moduli varieties for Pr(T'y, ) and Py, are
smooth and irreducible. We calculate the dimensions of these varieties. Also, we prove that algebra Py, ,, is a free
product of algebras of Pr of smaller bipartite graphs over algebra Pr(I'; 1). We show birational equivalence of
representation spaces and moduli varieties for Pr(I'y ) and fibred product of representation spaces and moduli
varieties for Pr’s of smaller bipartite graphs over moduli variety of Pr(I' 1).

Then we consider algebras By, , which are similar quotients of B(I'y ). We use results on algebra Pr(I'; )
to get similar results for B(T'y ,,). Analogously, We prove that B, ,, and By, are free products of B’s of smaller
bipartite graphs over some algebras A,, and .Zk, respectively. We get a birational equivalence of representation
spaces and moduli varieties for B(I'y, ) and fibred product similar to the case of Pr.

We construct Morita equivalence of the algebra A4,, awith the deformed preprojective algebra for arbitrary
quiver. The deformed preprojective algebras are intensively studied by many authors (cf. [5], [3]). Using a result
of Crawley-Boewey [4], we check the required conditions for representation space and moduli space for B, .
Thus, we get an important fact, a birational equivalence of the moduli space for B, ,, and the fibred product
of B’s of smaller bipartite graphs over moduli variety of A,,. Moreover, using properties of flat morphisms, we
get a similar birational equivalence for By, .

At the end of the paper, we construct a birational immersion of the moduli space for A, into the fibred
product of Ay. Together with some other technical results this allows us to finish the proof.
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2 Basic definitions and preliminary results.

Firstly, in this section we formulate definitions of orthogonal pair in Lie algebra, generalized hadamard matrices,
their connection. Also, we remind the famous Winnie-the-Pooh conjecture formulated by Kostrikin et all in [].
In the second subsection we recall the notion of algebraic unbiasedness and mutually unbiased basis in Hermitian
space. In the third subsection we formulate the definition of reduced Temperley-Lieb algebra of graph. Also, we
light the connection between orthogonal pairs (decompositions) and representations of temperley-Lieb algebra
of arbitrary graph. In the fourth subsection we introduce the algebra Pr(I") the generalization of B(T"). Also,
we formulate some trivial properties of Pr(I"). In the last subsection we recall the notion of representation space
and moduli variety and note some properties of these objects. For fixed algebra C, we will consider moduli
varieties of two types: representation space, i.e. space of all algebraic homomorphisms from C to M, (F'), and
moduli variety, i.e quotient of representation space by natural PGL,, (F') - action.

2.1 Orthogonal Cartan subalgebras and generalized Hadamard matrices.

Consider a simple Lie algebra L over an algebraically closed field F' of characteristic zero. Let K be the
Killing form on L. In 1960, J.G.Thompson, in course of constructing integer quadratic lattices with interesting
properties, introduced the following definitions.

Definition. Two Cartan subalgebras H; and Hy in L are said to be orthogonal if K(hq,he) = 0 for all
hi1 € Hy, hy € Hs.

There is the classification problem for pair of Cartan subalgebras in sl(n). Reader could find some previous
results about this problem and closely related problem of classification of generalized Hadamard matrices later.

Definition. Decomposition of L into the direct sum of Cartan subalgebras L = @?jllHi is said to be
orthogonal if H; is orthogonal to Hj, for all i # j.

We will study pair of orthogonal Cartan subalgebras of sl(n) and orthogonal decompositions of si(n) up to
action of GL,(F) by conjugation.

Intensive study of orthogonal decompositions has been undertaken since then (see the book ?? and references
therein). For Lie algebra sl(n), A.I. Kostrikin and co-authors ?? arrived to the following conjecture, called
Winnie-the-Pooh Conjecture (cf. ibid. where, in particular, the name of the conjecture is explained by a
wordplay in the Milne’s book in Russian translation).

Conjecture 1. Lie algebra sl(n) has an orthogonal decomposition if and only if n = p™, for a prime number
p.

The conjecture has proved to be notoriously difficult. Even the non-existence of an orthogonal decomposition
for sl(6), when n = 6 is the first number which is not a prime power is still open.

Further, let us recall the connection between orthogonal pairs in sl(n) and generalized Hadamard matrices
of order n. Firstly, remind the definition of generalized Hadamard matrices. Let A be the set of n x n matrices
with non-zero entries. A matrix A = {a;;} from N is said to be a generalized Hadamard matrix if

n

PR} (1)

j=1 Mhi
for all 7 # k.
This condition can be recast by means of Hadamard involution h : N'— N defined by
h:ag; — ! (2)
ey na

Proposition 2. A is a generalized Hadamard matriz if and only if A is invertible and h(A) = A~L.
Proof. Indeed, (1) is equivalent to A - h(A) = 1. O



Remark. Sometimes, generalized Hadamard matrices are named as Type-|| matrices (cf. [?]) or orthogonal-
inverse matrices (cf. []).

For any two Cartan subalgebras in a simple Lie algebra, one is known to be always a conjugate of the other
by an automorphism of the Lie algebra. For the case of sl(n), Cartan subalgebras are conjugate by an element
of GL,(F), i.e. if (H, H') is pair of Cartan subalgebras, then H' = AHA™!, for A € GL,,(F). The transition
matrix A is uniquely defined when we fix basis {e;} and {f;} such that H consists of diagonal matrices in the
first basis and H' does in the second basis. The freedom of choice for one basis is given by the normalizer in
GL,(F) of one Cartan subalgebra, i.e. the group of monomial matrices. Therefore, the transition matrix A is

defined up to transformations
A" = My AM,, (3)

where M; and My are invertible monomial matrices.

Proposition 3. [?] Two Cartan subalgebras H and AHA™' form an orthogonal pair of Cartan subalgebras in
sl(n) if and only if A is a generalized Hadamard matriz.

2.2 Algebraic unbiasedness and mutually unbiased bases and configurations of
lines in a Hermitian space

In this subsection, we will remind the notion of algebraic unbiasedness, mutually unbiased bases and complex
Hadamard matrices.
Two minimal (i.e. rank 1) projectors p and ¢ in V are said to be algebraically unbiased if

1

tr(pq) = o (4)

Equivalently, this reads as one of the two (equivalent) algebraic relations:
- (5)
pgp = npa

1
_ 1 6
apq = —q (6)

We will also consider orthogonal projectors. Orthogonality of p and ¢ is algebraically expressed as
pg=qp=0 (7)

Two maximal (i.e. of cardinality n) sets of minimal orthogonal projectors (p1, ..., pn) and (q1, ..., ¢, ) are said
to be algebraically unbiased if p; and g; are algebraically unbiased for all pairs (4, j).

Let si(V) be the Lie algebra of traceless operators in V. Killing form is given by the trace of product of
operators. A Cartan subalgebra H in V defines a unique maximal set of minimal orthogonal projectors in V.
Indeed, H can be extended to the Cartan subalgebra H' in ¢gl(V') spanned by H and the identity operator E.
Rank 1 projectors in H' are pairwise orthogonal and comprise the required set. We say that these projectors
are associated to H.

If p is a minimal projector in H’, then trace of p is 1, hence, p — %E is in H. If projectors p and ¢ are
associated to orthogonal Cartan subalgebras, then

Te(p— - B)(g —  F) =0,

which is equivalent to p and ¢ to be algebraically unbiased.

Therefore, an orthogonal pair of Cartan subalgebras is in one-to-one correspondence with two algebraically
unbiased maximal sets of minimal orthogonal projectors. Similarly, orthogonal decompositions of sl(n) corre-
spond to n+ 1 of pairwise algebraically unbiased sets of minimal orthogonal projectors. This will lead us to the
representation theory of reduced Temperley-Lieb algebras which we study in the next section.



More explicitly, algebraic unbiasedness can be expressed as follows. Let projectors p and g be given as
p=e®x, q¢=[f®y,

where e and f are in V and z and y are in V*. The equations p? = p and ¢ = ¢ imply:

(e,2) =1, (f,y)=1, (8)
where (—, —) stands for the pairing between vectors and covectors. Then the algebraic unbiasedness of p and ¢
reads: )

(e, )y ) = - ©)
Orthogonality conditions (7) reads:
((E, f) =0, (ya 6) =0. (10)

The terminology of unbiased bases first appeared in physics. It is a unitary version of the algebraic unbi-
asedness introduced above.

Let V be an n dimensional complex space with a fixed Hermitian metric ( , ). Two orthonormal Hermitian
bases {e;} and {f;} in V are mutually unbiased if, for all (i, j),

[(ei, f5) 17 =% (11)

Consider the orthogonal projectors p; and g;, corresponding to these bases, defined by:
pl(_) =€ ® <_7ei>7 QJ(_) = fj & <_7fj>

Then, the condition (9) is satisfied for them, hence they are algebraically unbiased. Note that these operators
are rank 1 Hermitian projectors, and, being such, are defined by non-zero vectors in their images. We say that
two rank 1 projectors are unbiased if they are algebraically unbiased Hermitian projectors.

We can regard algebraic unbiasedness as the complexification of unbiasedness. 77?7 Fix a Hermitian form
on V. The Hermitian involution gives a new duality on the set of algebraic configurations:

pi =Dl (12)

As we know(?7), the duality induces an anti-holomorphic involution on the variety of algebraically unbiased
minimal projectors.

Since mutually unbiased bases are algebraically unbiased, they are related to orthogonal Cartan subalgebras
in sl(n). Given m pairwise mutually unbiased bases B, Ba, ..., B, in a Hermitian space V, we obtain m
Cartan subalgebras Hy, Ho, ..., H,, in sl(n) which are pairwise orthogonal with respect to the Killing form. In
particular, a collection of n + 1 mutually unbiased bases in a Hermitian vector space of dimension n gives rise
to an orthogonal decomposition of si(n). This fact was noticed by P.Oscar Boykin, Pham Huu Tiep, Meera
Sitharam and Pawel Wocjan in [2].

Let B an orthonormal basis in C". Matrix A = (a;;) is said to be complex Hadamard if bases B and A(B)
are mutually unbiased. Let A and C be a complex Hadamard matrices. We will say that A is equivalent to C
if A = M,CM, for some unitary monomial matrices My, Ms.

There exists the following relation between complex Hadamard matrices and generalized Hadamard ones:
A is a complex Hadamard if and only if A is a generalized Hadamard and |a;;| = 1. As we know, there is an
anti-holomorphic involution on the variety of generalized Hadamard matrices. Fixed points of this involution
is a variety of complex Hadamard matrices. Therefore, if we construct d-dimensional complex algebraic variety
of generalized Hadamard matrices, then we get d-dimensional real variety of complex Hadamard matrices.



2.3 Reduced Temperley-Lieb algebra of graph B, (I'), orthogonal pairs and decom-
positions in sl(n).

The above discussion of the problem on orthogonal decompositions and algebraically unbiased projectors moti-
vates the study of representation theory for algebras B(I"), which we introduce here. Under some specialization
of parameters, these algebras become quotients of more familiar Temperley-Lieb algebras of graphs. The latter
are, in their turn, quotients of Hecke algebras of graphs.

Let T’ be a connected simply laced graph with no loop (i.e. no edge with coinciding ends). Denote by V(T')
and E(T) the sets of vertices and edges of the graph. Let K be a commutative ring K = F[r,r~1], where F is a
field of characteristic zero. We define reduced Temperley-Lieb algebra B(I') as a unital algebra over Generators
x; of B(T'), except for 1, are numbered by all vertices i of I'. They subject relations:

o 22 =z, for every i in V(I'),
® x;x;T; = r¥;, TjT;x; = rxj, if ¢ and j are adjacent in T,
e z;x; = x;x; = 0, if there is no edge connecting ¢ and j in I'.

For fixed r € F*, we will use the notation B,.(T"). Clearly, any automorphism of graph I' induces automorphism
of algebra B(T"). It can be shown that algebra B(T") is a quotient of Temperley-Lieb algebra T'L(T") of graph T’
(cf.77).

Fix r;; € F* for any non-oriented edge (ij). Denote by r the collection of all r;;. Consider algebra B,(T').
Namely, for fixed r;; € F*, let us define the algebra B.(I') as unital algebra with generators z, labeled by
vertices of I with relations:

2 _ .
o z7 =z, for every i € V(I),
® X;x;T; = 1T, TjTix; = i, for adjacent vertices ¢, 7,
e z;7; = x;x; = 0 for non-adjacent vertices ¢, j.

It is clear that if r;; are the same for all edges ij and is r then B:(I') = B,.(T").

Using relations and connectedness of graph I', we get that ranks of generators z; under any representation
are the same. We will say that representation ¢ of B,(I") has rank d iff rank of some (and hence all) x; is d.
We will study non-trivial representations of algebra B(I") (i.e. representations of positive rank).

It is easy that group Awut(I") acts on the variety of representations of B(I'). Denote by I';,(n) the graph
with m rows by n vertices in each row. Two vertices are adjacent iff they are in different rows. It is clear that
automorphism group of T',,,(n) is the wreath product of symmetric groups S, 1.Sy,. Also, we will consider direct
product of symmetric groups S,™ acting by permutations of vertices lying in the same rows. Thus, we can
formulate the following theorem:

Theorem 4. e Non-ordered set of m orthogonal Cartan subalgebras Hy,...,Hp—1 of sl(n) are in bijective
correspondence with Sy, U Sy, -orbits of n-dimensional representations of the algebra Bi (T (n)).

e Ordered set of m orthogonal Cartan subalgebras Hy,...,H,—1 of sl(n) are in bijective correspondence with
SxX™-orbits of n-dimensional representations of the algebra B1 (T, (n)). We have analogous statement for

GL, (F)-quotients:

e GL,(F)-orbits of non-ordered set of m orthogonal Cartan subalgebras Hy,...,H,,—1 of sl(n) are in bijective
correspondence with Sy, 1 Sy, -orbits of n-dimensional modules of the algebra B1 (T';,(n)).

o GL,(F)-orbits of ordered set of m orthogonal Cartan subalgebras Hy,...,H,,—1 of sl(n) are in bijective
correspondence with S)X™-orbits of n-dimensional modules of the algebra B1 (I'p(n)).

Proof. Let us show that n-dimensional representation of B1 (I';;,(n)) has rank 1. Actually, we have m sets of n
orthogonal projectors of the same rank. Thus, these projec‘sors has rank 1. It is easy that n-dimensional repre-
sentation of Bi (T, (n)) defines m sets of pairwise algebraically unbiased sets of minimal projectors. Straight-
forward check %roves the theorem. O



2.4 Standard orthogonal pair in si(n), Heisenberg relation and deformation.

In this subsection we give some examples of orthogonal pairs in sl(n) related to Heisenberg group and its
deformations.

It is well-known that Cartan subalgebra H of Lie algebra sl(n) has basis X, ..., X" !, where X satisfy to
relations: X" = 1 and TrX i =0,i=1,..,n— 1. Adding identity element, we get associative commutative
algebra H with basis 1, X,..., X"~ 1. Consider pair of Cartan subalgebras (Hy, H;). As we know, there are
bases 1, X, , X" L X" =1 TrX* =0,i =1,.,n—1and 1Y, ... Y" LY" = 1 7Y/ =0,j = 1,...,n— 1
of associative subalgebras Hy and H; respectively. We will say that pair of Cartan subalgebras (Ho, Hy) is
standard (cf.7?7) iff X, Y satisfy to Heisenberg relation:

XY = eV'X, (13)

where € is a primitive root of 1 of degree n. It is well-known that standard pair (Hy, Hy) is orthogonal. Actually,
if X,Y such that XY = €Y' X then Tr(XY) = ¢Tr(YX) = ¢Tr(XY). Hence, Tr(XY) = 0. Analogously, one
can prove that Tr(X‘Y7) =0 fori,j =1,...,n — 1.

As we know, any two Cartan subalgebras are conjugate. Consider standard pair (Hy, Hy). Let Hy be a
subalgebra of diagonal matrices. Choose generator X as diagonal matrix of type: diag(1,e,...,e""1). Thus,
Y = AXA~! for some matrix A. It can be shown in usual way that matrix A (up to permutation of rows and
columns) has the following view:

1 1 1
— — (-1G-D |11 e .. €1
A= (aij =€ )i,j:l,...,n = (14)
1 et €

It is well-known that matrix X and Y define the irreducible representation of Heisenberg group, which is a
central extension of Z,, & Z,, by Z,.
Assume that n = km. Consider deformation of Heisenberg relation of the following type:

XY = PV XF XY™ = mY XL (15)

Proposition 5. Consider Cartan subalgebras Hy =< X,.., X" ! >p, Hy =< Y,...Y"" ! >p where X" =
Y =1, TrX! = TrtY = 0,i = 1,...,n — 1 and X,Y satisfy to relation (15). Then pair of Cartan subalgebras
(Hy, Hy) is orthogonal.

Proof. We have to prove that TrX'YJ = 0 for i, = 1,..,n — 1. Consider the case: j = am,a =
1,...,k — 1. Applying relation (15), we obtain the following identity: XY™ = eam Xi=-lyamx Ty(X'yem) =
eMTr( XY mX) = @™Tr(X'Y ™). Thus, Tr(X'Y®") = 0 for any i = 1,..,n — 1. Further, consider
the case j # am. X'Y7 = X7FXFYJ = R Xi=kyIiXF Because of j # am, we get that kj # 0(modn).
Hence, Tr(X‘Y7) = MTr(X"FYIXF) = MTr(X'Y7). Therefore, we get that Tr(X'Y7) = 0 for all
ij=1,.n—1. O

Orthogonal pair of Cartan subalgebras (Hy, Hy) of sl(n) is said to be (k,m)- weak standard if there are bases
Xi=1,...,n—10of Hyand Y7,j =1,....,n — 1 satisfying to relation (15).

For studying of (k,m) - weak standard orthogonal pairs, we will introduce the group G and its quotient G.
Denote by [k, m] and (k,m) the l.c.m. and g.c.d of k and m respectively. Consider group G with generators
z,y,t and defining relations: z" = y" = tleml = 1 ghy = tﬁyxk,mym = tﬁym@xt =tr,yt = ty. It is
evident that group G is a central extension:

0—— Z[k,’rn] é Gl 1; (16)

where G is generated by x,y satisfying to relations: z" = y" = 1,zFy = ya* zy™ = y™x. It is easy that
element zF and y™ are in the center of G;. Thus, G is a central extension:

0——>2y, 72y, —> G ——> Ty, * Ly, —> 1, (17)



where Z,, * Zy, is a free product of cyclic groups. Denote by a, b the generators of Z,, and Zj, respectively. Also,
we have the following exact sequence:

04>Z[k7m]@Zm@ZkHéHZm*ZkHL (18)
Consider natural morphism: Z,, * Zy — Z, ® Z. As we know (see [?]), kernel of this morphism is a free group

F of rank (m—1)(k — 1) with generators a'b’a=b~7,i =1,...,m—1,5 = 1,.... k— 1. Thus, we have the following
commutative diagram:

0 —— Zik,m) ® Ly © Ly, Hy F 1 (19)
0 —— Zig,m) D Lm B Ly, G Logn, * Ljy ——> 1
0 0 Ly ® Ty —> Loy ® Zi, —> 0

H, is a subgroup of G generated by z* y™ t,z'y/a~ "y~ 7, i =1,...,m —1,j = 1,....,k — 1. Since F is a free
group, upper sequence is split. And hence, H; is a semidirect product. Since x*, 4™ are central, we obtain that
plyleTly ™I gk = g alyizTiy ™I and alylaz Ty oy =y - 2lyix iy I ie. action of F on Lig,m) © L D Ly,
is trivial. Thus, H; is a direct product F' X Zj, p) @ Zp, © Zy,.

Further, consider n-dimensional representation p of G corresponding to orthogonal pair. In this case, we
have p(t) = ¢®™) . 1, Trp(z!) = 0,i = 1,...m — 1, Trp(y?) = 0,j = 0,....,m — 1 and Trp(z'y?) = 0 for
i,j = 1,...,m — 1. Let us restrict p to subgroup Z,, ® Z;, generated by z* and y™. Using vanishing of the
traces, we get that this restriction is a regular representation of Z,, ® Zy, and p(F(Z, ® Zy)) is a n-dimensional
commutative diagonalizable subalgebra, i.e. there is a basis in which matrices from p(F(Z,, ®Zy)) are diagonal.
As we know elements z'y/z iy, i=1,...,m—1,j=1,....k — 1 commute WithAack and y™, then one can show
that p(xiy/z~y~7) are commuting matrices. Let us consider the quotient of G' by commutativity relation of
2yix~ly I, i=1,...m—1,j =1,...,k — 1. Denote this quotient by G. We have the following exact sequence
for G:

0——=H=2728*D"D 7 1 ®Zp ® Ly —> G —> Go =Ly L, —>0 (20)

One can construct representations of group G as follows: fix one-dimensional representation (or character) x of
H with condition y : ¢t — ™). By proposition 5, we get that F[G] - module F[G]®pim) x defines weak standard
orthogonal pair. Variety of characters of H is Hom(H, F*) = (F*)k=D(m=1) g Hom(Zy,, F*) ® Hom(Z,, F*).
There is an action of Gy = Z,, ® Z;, on H (and hence on Hom(H, F*)). It is clear that orthogonal pairs are
equivalent iff corresponding characters of H are in the same orbit of G5 - orbit. It can be shown in usual way
that

Proposition 6. (k,m) - Weak standard orthogonal pairs in sl(n) are parameterized by algebraic torus T'(k,m) =
(F*)(k—l)(m—l) .

Further, consider (m,k) - weak standard orthogonal pairs. The same arguments show us that (m,k) - weak
standard orthogonal pairs are parameterized by torus T'(m, k) = (F*)*=D(m=1),

Proposition 7. If (k,m) = 1, then intersection of two tori T(k,m) NT(m, k) in X (n,n) is a standard pair.

Proof. Consider the relations: X*Y = *Y X* X™Y = ¢™Y X™. Because of (k,m) = 1, there are a,b € Z such
that ak +bm = 1. Thus, XY = Xoktbmy — caktbmy yaktbm _ y X O

Let us consider the case n = 6 = 2 - 3. In this case relation (15) has the following view:

XY =Y X% XY? = -V3X, (21)



where € is a primitive root of unity of degree 6. As we know, X and Y are parameterized by two-dimensional
algebraic torus T'(2,3). Find generalized hadamard matrices parameterized by this torus. One can show in
usual way that these matrices A(a,b),a,b € F* (up to permutation of columns and rows) have the following

type:

1 1 1 1 1 1
1 ae be2 —1 aet béd
1 €2 et 1 €2 et
A(avb) - 1 —a b _1 a —b 9 (22)
1 & €2 1 et 2
1 ae® be* —1 ae?  be

where a,b € F*. Tt is easy that generalized Hadamard matrices corresponding to T'(3,2) are At(a,b) (up to
permutation of columns and rows).
Remark. This example will play important role in the proof of main result of this paper.

3 n-dimensional representations of B,(I';,) and fibred products.

Let us introduce the notions of variety of representations and moduli variety of algebra A. Variety of repre-
sentations of A is affine variety Homg, (A, M, (F')). We will denote this variety by Rep,,(A4). It is easy that
there is a well-defined action of group GL,,(F) on Rep,,(4). It is well-known that there is algebraic quotient
Rep,,(A)/GL,(F). This quotient is called moduli variety of A. We will denote moduli variety by M,,(A).

In this section we consider n-dimensional representations of reduced Temperley-Lieb algebra By (I'y ) for
complete bipartite graph I'y, ,,. Firstly, we will introduce an algebra Pr(I"). This algebra is a natural general-
ization of B.(T"). Further, we will prove that these representations are representations of the natural quotient
By, . For this purpose, we will introduce algebra ka (r;). We will prove that By, is a free product of By (T )
and By(T' p—m) over jk(ri). Using these arguments, we deduce that variety Rep,, By, is a fibred product of
Rep,, B (Tk.m) and Rep, Bx(Tk.n_m) over Rep,, Ay (r;)[1, m].

After that we will study some basic relation between M, By, and fibred product of M, B, (T, ) and
M By (T p—m,) over Mn.Ak(ri)[f, m.

3.1 Algebras Pr(I'), B,.(I') and its relations to path algebras.

In this subsection we will introduce the algebra Pr(I") and will study its connection with B.(T"). Algebra Pr(T)
is algebra over K[r;;] with unit and generators z, labeled by vertices of I" with relations:

o 22 =g, for every v € V(T
® I,Ty = Tk, = 0 for non-adjacent vertices v, w.

It is clear that algebra B, (T') is a quotient of Pr(T") for fixed r;; € F*. Moreover, the algebras Pr(I") and B, (T")
are algebras with augmentation. Denote by Pr™(T") and B (T') the respective ideals of augmentation.

Let us construct the double quiver Qr. The set of vertices of Qr is the set V(I'). For any adjacent vertices
1,7 in the graph I', we will connect these vertices by opposite arrows a;; and aj;. For any path v € Qr, we will
consider the element x., € Pr(I") of form: z;,...z;,, where i1, ..., 4, are consecutive vertices of path .

Let us formulate (cf. [1]) proposition:

Proposition 8. Algebra Pr(I") has F-basis of form 1,z where  runs over all pathes in Qr. Similarly, algebra
B, (T') has F-basis of form 1,x., where v runs over homotopic classes of pathes in the graph T.

Recall the construction of homotop gx of the algebra A by means of the element z € A. Let x be the fixed
element of algebra A. We will consider non-unital algebra A, with multiplication #*, defined by formula:

a1 *; A = A1Xa2.



Formally adding the unit, we get the algebra EJC We studied the properties of homotops in the article [1].
Consider the path algebras FQr and FT of quiver Qr and graph I" respectively. It is clear that algebra FT
is a quotient of F'Qr by ideal generated by elements a;;ja;; — e; for any arrows a;;, a;; and vertices i.
For s;; € I'* such that sfj = 14, consider the elements

A(QF) = 1—|—Zsijaij, A(F) = 1+Zsijlij

sum is taken over all arrows a;; of the quiver Qr and all edges [;; of the graph I'. It is easy that algebras B, (T")
and Pr(T") are homotops of path algebras FT' and FQr by means of the elements A(T') € FT' and A(Qr) € FQr
respectively. Evidently, we have the following commutative diagram:

Pr(I') ——= FQr (23)

fori=1,2.
Also, note the following property of the algebras B.(T") and Pr(T") (cf. [1]):

Proposition 9. Homological dimension of categories By(I') — mod and Pr(T") — mod is less or equal 2.

3.2 Connection between representation of Pr(I') and B,(I).

In this subsection we will consider representations of quiver Qr and its relation to representation of Pr(I'). As
we know, representation of quiver @) with set of vertices Q¢ and set of arrows )1 has the following description.
Denote by F')o the subalgebra of F'Q) generated by all elements e,,v € Q)o. Denote by Rep,, @ and Rep,,Qo
varieties of n-dimensional representation of F'QQ and F'Qq respectively. Algebra F'@Q is isomorphic to direct
sum: @y,e,F'. We have the surjective morphism of varieties:

f :Rep,,@ — Rep,, Qo (24)

Recall that variety Rep,, (o is the union of irreducible components. These components are parameterized by
vectors @ = (o, ..., @|q,|), @i € Ny, Zﬁq' a; = n. These vectors are called dimension vectors. We will denote
by Rep,,Qo[@] the component corresponding to dimension vector @. Denote by Rep, Q[@] the subvariety

/1 (Rep,,Qo[d]) of Rep,, Q. Thus, we have the following decomposition:

Rep,Q = |_JRep,Q[d]. (25)

a

Variety Rep,,Q[&] has the following description. Fix the representation ¢ € Rep,,Q[@]. Consider the space
V of the representation p. Space V' is the direct sum @&,eq, Vs of subspaces V,,, v € Qp. Elements g(e,),v € Qo
are orthogonal projectors: g(e,) : V' — V,,. Linear operators o(a;;) transform subspace V; into V;. Denote by
Gr(a, V) the product [],co, Gr(ay, V). Then variety Rep,,Qo[d] is a dense open subvariety of Gr(&, V). The
fiber of f is the product [], o, Hom(V;, V;).

Consider representation p of the algebra Pr(T'). Denote by Rep, Pr(I')[d] the variety of n-dimensional
Pr(T")-representations satisfying to condition: rankp(z,) = o, v € V(I'). Let |d| = le(lr)l o;. Using morphism
¢i,i = 1,2, we have the morphisms of varieties:

¢; : Rep 5 Qr[d] — Rep 5 Pr(I)[a],i = 1,2 (26)

Similar statements for algebras FT and B,(T') are true.

10



We will say that representation p of B(T') is representation of rank « if rank(x,) = « for some vertex v.
Note that, it follows from relations of B, (T") that ranks of all z, coincide. Denote by Rep,, B (T')[a] the variety
of n-dimensional B, (I")-representation of rank c.

Note some properties of morphisms: Rep,,I' — Rep,,Qr[a@] and Rep,, B:(T")[a] — Rep, Pr(I")[d]. Using
relations of algebras FT' and B.(T'), we get that images of Rep,I" and Rep,, B,(T") are in the components of
the Rep,, Qr[d] and Rep, Pr(I')[d] with condition: a; = o; = « for all 4, j € V(T") respectively.

Thus, square (23) implies the commutative diagram of varieties:

Rep,, Pr(I')[@] <—— Rep, Qrld] (27)

| |

Rep,, B:(T)[o] Rep, I’

Further, define map from moduli varieties of algebras Pr(T") to affine space of dimension |E(T")|.
trr : Rep, Pr(D)[1,....,1] — FP) (28)

by formula:
trr = p— (Trp(xiz))), (ij) € E(T) (29)

where ¢j runs over all non-oriented edges of graph I'. Fix r;; € F* for any edge i¢j. Then Rep, B.(I')[1] =
tre ' ({rij Yijep(r))- 1t is clear tr is GL, (F)-equivariant map. Thus, we have the reduction:

Trp : M, Pr(D)[1,...,1] := Rep, Pr(I)[1, ...,1]/GL,(F) — FED (30)

and also, M,, B.(T')[1] := Rep,,B:(T")[1]//GL,(F) = Tr;l({'f'ij}ijeE(F)).

Consider complete bipartite graph I'y, ,,, with two rows of vertices. There are k vertices and m vertices in
upper and lower rows respectively. Denote by p1, ..., pr. and qi, ..., ¢, the generators of Pr(I' ,,) corresponding
to vertices of upper and lower rows respectively. Consider subalgebras A<,,, . p.> and A< . 4, > generated by
projectors pr, ..., pr. and qy, ..., ¢, respectively. It is clear that these subalgebras are F®* and F®™ respectively.
One can show that Pr(T',) is a free product of F®* and F®™. Let us recall some facts about varieties of
representations.

Lemma 10. (¢f. [?]) Let A1, As, B be a finite-generated algebras. Then we have the following commutative
diagram:

Rep,,(A; xp A2) — Rep,,(A1) (31)
Rep,,(42) Rep,,(B)

Moreover, there is an isomorphism of representation spaces:

Repn(Al *B AQ) = Repn (Al) XRepn(B) Repn(Ag) (32

~—

Corollary 11. Consider dimension vector & = (a; = rankpy,...,ar = rankpg, g1 = rankqy, ..., Qerm =
rankg,,). Denote by dr = (a1,...,ar) and &y = (Qgat, - Chrm). Assume that n > Zle o; and n >
S agyi. In this case, we have the following isomorphism of varieties:

Rep, Pr(I'y,m)[d] = Rep, F¥*[d;] x Rep, FO™[d,,]. (33)

Denote by GLg, (F') and GLg, (F) the groups GLq, (F) x .. x GLa(F) x GL,_ s . (F) and
GLay, (F) X oo X GLayy,, (F)) X GLp_som o, (F') Tespectively. Then

Rep,, F*[d;] = GL,(F)/GLg, (F), Rep,, F®™[d,,] = GL,(F)/GLg, (F). (34)

11



We get that Rep, Pr(T'y.,) is irreducible and we have the following isomorphism of varieties:
Rep, Pr(Ty ., )[@] = GL,(F)/GLg, (F) x GL,(F)/GLg,, (F). (35)

In particular, we have the formula for dimension of Rep,Pr(T'y m)[d]:

k+m k m
dimpRep,, Pr(Ty,)[d] = 2n® — Z o — (n— Zai)Q —(n— Zai+i). (36)
i=1 i=1 i=1

3.3 Algebras By, as free products.

Denote by pi,...,pn and q1,...,qx, k < n the generators of the algebra By(I'y,) corresponding to vertices of

lower and upper rows respectively. Let ) be an element Zle qi-
We can formulate the following statement for algebra By (T'x.):

Proposition 12. Any By (I'y,)-representation of rank s has dimension more or equal sn. Assume that there
exist sn-dimensional Be(T'y ) - representations of rank s. Let I be an ideal of By(T'y.) generated by element
> pi — 1. Denote by By, the quotient By(T'y.,)/I. Then

Z Tij = 1 (37)
j=1

for anyi=1,....k, and we have the isomorphism of varieties:
Repsan,” [S] = RepsnBl‘(Fkﬂl)[S] (38)
Proof. Straightforward. O

It is well-known that any n-dimensional By(T'y ,)-representation p of rank 1 is an irreducible. Actually, it
is easy to check that elements p(p;),i = 1,...,n, p(piq1p;), % # j form the basis of matrix algebra. It was proved
by Ivanov D.N. ([?]).

Of course, we have the analogous statement for algebra By (T'y, ).

Corollary 13. Any B (T, )-representation of rank s has dimension more or equal sn. Assume that there
exist sn-dimensional By (T, ,)-representations of rank s. Let J be an ideal of Be(T'y, ) generated by elements
S pi—1and > | ¢; — 1. Denote by B,, ., the quotient By(T'x,n)/J. Then

n n

o=y ri=1 (39)

j=1 i=1
foranyi,j=1,....,n, and we have the isomorphism of varieties:
Repy,, Bn.n(s] = Repg, Br (' n)[s]. (40)

Consider the case of non-trivial n-dimensional representations of By, , and B, ,. It can be shown in usual
way that these representations has rank 1.

Fix a partition of n vertices of lower row into two complement subsets with m vertices and n — m vertices
respectively. With respect to this partition, we get the partition of generators p, ..., p, into two non-intersected
subsets p;,, ..., Di,, and pi,. 150 Piy,-

We have a natural morphisms: ¢ : By(Tx,m) = Be(Tkn) = Bin = Br(Tkn)/Ip and ¢ : By(Tk pn—m) —
By (T'k,n) = By, defined by composition of embeddings of graphs and natural projection. Let r;,j =1,..., k be
the sum Y, 7;,;. Consider the subalgebra Ap(ry) = A(pigy,....qr) Of algebra By(T'y s) generated by elements
P= Z;’;lpij and ¢;,i =1, ..., k.

12



Lemma 14. Algebra Ay(r;) has a defining relations: P2 = P,q% = ¢, qiPq; = riqi,i = 1, ... k.
Proof. As we know (cf. [1]) algebra By(I'y ) has a basis p;,qj, -..pi,qj, with iy # ipq1 and ji # jry1 and

elements that can be obtained from these products by removing the first and the last factor. Let us show that
the elements of the form

L;gi, Pqi, P .. .qi;; Pqi,P...qi.; ¢, Pqi,P...P; Pq,P...q P (41)
with i # ix1q for all £ < s —1 in all these expressions form a basis of the algebra A = .Zk (r4).

Introduce the filtration on A by defining F; A to be the subspace spanned by all elements in the list (41) with
the number of factors ¢;’s and P in the products to be less than or equal to 7. Also, we have a filtration F; B(I'y 5)
on B(T'ys). The basis in F; B(T'y, 5) is compatible with filtration, hence it gives a basis in F; B(T'y, 5)/F;—1B(Tk.s)
(consisting of products of projectors of length ¢). Clearly, F;A C F; B(I'k ), hence we have a map:

¢ : FA/F; 1A — F;B(Cy )/ Fio1B(Tkm)

The quotient F;A/F;_1A is generated by expressions in (41) of length precisely i. One can easily see that
these elements are mapped into linearly independent elements in F; B(I'y )/ F;—1B(I'k,m ), because the image
under ¢ of any two different such elements is a linear combinations of disjoint subsets of elements in the basis
for F;B(Tk.m)/Fi—1B(Tk.m). By induction on ¢ (starting from FpA), we get that elements (41) are linearly
independent, hence they form a basis in A. Note that the same argument also proves the strict compatibility
with filtration:

F,A=ANF,BTkm).

Thus, we get the required statement. O
Denote by i the monomorphism: 4, : .Zk(ri) — By(Tkm). Let r; be 1 — r;. Consider subalgebra
Aiprigrcnan)(17) of Be(Tgn—m) generated by P’ = Z?:m.upi and ¢;. Analogous to lemma 14, this subal-

gebra isomorphic to Ay (). Further, there exists isomorphism: 7 : Ay (r;) = Ay (r}) defined by correspondence:
P+—1— P g — ¢. Hence, we have the monomorphism: ¢’ : Ak (r;) = By(T'k n—m) defined by formula:

n
PHl*Pll—)lf Zp“ qi — q;.
1=m+1

One can check that the following diagram:

A (ry) Be(L'k,m) (42)

o

Br(ka—m) —— Bk,n

is commutative.

Proposition 15. Consider the partition of set pi,...,pn into two complement subsets p;,,...,pi, and
Dipsrs -+ Di,, and algebras By(Ly ) and By(Ty n—m). Algebra By, is a free product of By (L' ) and Br(T'kn—m)

over A (r;).

Proof. We have a morphism: By (I'ys) * T (rs) B, (T'x.n—s) = By n. This morphism is surjective, because images
of By(T'y ) and By(T'k n—s) generate By ,. By definition of morphisms ¢ and ¢', we get that p; = ¢(p;),i =
L 85pivs = ¢/ (pi)yi = s+ 1,..,m5¢5 = ¢lq;) = ¢'(q5)-

Obviously, p? = pi,q?- = q;,PiqjPi = TijDi, 4jPiq; = Tijq5,¢q; = 0 for i # j, p;p; =0 for 4,5 € {1, ..., s} and
for i,j € {s+1,...,n} are relations in free product B,(I'y s) * Zo(rs) Be(Tkn—s)-

Let us prove that p;p; = 0 for all @ # j. Let ¢ € {1,...,s} and j € {s+ 1,...,n}. Evidently, p;, = p,P =
i an:lpm =p;and p; = (1 - P)p; = ZZL:SJH Pmpj = pj. Hence, p;p; = p;P(1 — P)p; = 0. Analogously,
p;jp; = 0. Hence, relations of algebra B, ,, are satisfied. Using surjectivity of morphism, we obtain the required
statement. 0
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Denote by A,(r;) the unital algebra with generators P;gqy,...,q, and relations P? = P, ¢? = ¢;,¢;Pq; =
TiQi, Y vy ¢ = 1. Denote by I,,, and I,,_, the ideals generated by element Y., ¢; — 1 in algebras By (I m)
and By (I'y n—m) respectively. Analogous to .Zk, we have monomorphism: i : A, (r;) = Be(Tpm)/Lm = Bnom,
isomorphism 7 : A, (r;) & A, (r}),r; = 1 — r; and, hence, monomorphism i’ : A, (r;) = By(Tnn—m)/In—m =
By, .n—m. Clearly, we have the following commutative diagram:

o

@

Bn,n—m I Bn,n

We get the following statement for algebra B, ,:

Corollary 16. Consider the algebra B, ,. Fiz a partition of the set pi,...,p, into two complement sub-
sets Piyy ooy Piny 00 Doy -y Di, . Then algebra By, ,, is a free product of algebras By = Be(I'nm)/Im and
Byn—m = Be(Tpn—m)/In—m over algebra A, (r;).

Proof. Analogous to proof of proposition 15. O

3.4 Fibred products.

It is clear that morphisms ¢ and i’ define morphisms i* : Rep,Br(T'nm) — Rep,A,(r;), i*
Rep, B:(T'nn—m) — Rep, A,(r;). It is easy that n-dimensional representation of By(I'y, ) is a represen-
tation of rank 1. Also, note that representations of algebra A, (r;) and Ay (r;) are parameterized by dimension
vectors consisting of ranks of generators. It is easy that morphism ¢* transforms By (T, ,, )-representation of rank
1 to n-dimensional representation of A, (r;) with dimension vector (1,...,1,m), i.e. rankg; = 1,rankP = m.
Analogous, we have the similar arguments for algebra A(r;). Denote by Rep, A, (r;)[1,m] the variety of
representations of algebra A, (r;) with dimension vector (1,...,1,m).
Using lemma 10 and proposition 12, we get the following:

Corollary 17. We have the isomorphisms of varieties:

Repan,n[]-] = Repan,n = RepnBr(Fk,m)[l] X RepnBr(Fk,nfm)[l]a (44)

Rep,, gk ('rl)[f,m]

Rep,, B, (1] = Rep,, Bi» = Rep, B, m X Rep, A, (i) [T.m] Rep,, Bi.n—m. (45)

Remark. Of course, there is a trivial generalization of this fact for case of sn-dimensional representations
of rank s.

Further, let us study the quotient of fibred product. Let Y7, Y5, Z be an affine G-varieties for some reductive
algebraic group G. Assume that we have G-morphisms: f; : ¥V; — Z,i = 1,2. Thus, Y7 Xz Y5 is an affine
G-variety too. Therefore, we can consider algebraic quotients Y;/G,i = 1,2 and Z/G, i.e. SpecF[Y;]%,i = 1,2,
SpecF[Z]¢. Also, we have an algebraic quotient Y, x 7 Y2/G = Spec(F[Y1] @pz F[Y2])¢. One can construct
the following morphism: p : (Y1 xz Y2)/G — Y1/G Xz, Y2/G. In this subsection we will study this natural
morphism.

Denote by G the stabilizer of point x. Fix points y; € Y1,y2 € Ya. It is easy that Gy, C Gy, (,,) and
Gy, C Gy, (y,)- Denote by G the orbit of point 2. Note that morphism: p: (Y1 xz Y2)/G — Y1/G x5/ Y2/G
defined by rule: p : G(y1,y2) — (Gy1,Gya). Denote by m,m;,¢ = 1,2 the natural morphisms: 7 : Y xz Yy —
(Y1 xzYs)/G, m; 1 Y; = Y;/G,i =1,2 and Also, consider subvarieties Yi(o) = {yilm; Y(mi(yi))— closed orbit}.
One can show that Yi(o) /G is a geometric quotient. It is clear that m(YZ—(O)) are open subvarieties of Y;/G.
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Lemma 18. Consider pomt (Gy1,Gya) € Y( )/G Xz/G Y /G such that vy; € Y( ) ,2 € Z, where f1(y1) =
fo(y2) = 2. Assume that p~1(Gyi, Gya) consists of closed orbzts Then fiber p~ (Gyl,Gyg) is isomorphic to
variety of double classes: Gy, \G./Gy,.

Proof. One can show that p~(Gy1, Gyz) = G \(G,/Gy, x G,/G,,). The rest is trivial. O

Corollary 19. Consider a component C of Y1 Xz Yo which contains a point (y1,vy2), fi(y1) = fa(y2) = 2
satisfying to condition: |Gy, \G,/Gy,| = 1. Then restriction of p to C is a birational morphism.

Consider subvariety {y € Y1/G Xz, Y2/Glp~'(y) = 0} of Y1/G xz/q Y2/G. It can be shown that
this subvariety can be non-empty. Actually, consider point (y1,y2) € Y1 Xz Y2 such that fi(y1) # f2(y2)
and f1(y1)¢ N fa(y2)¢ # 0. In this case, we get the point (71(y1),m2(y2)) € Y1/G Xz/¢ Y2/G such that
p~H (i (yr), m2(y2)) = 0.

Let us apply these arguments to the case of Rep, B, . As we know, in this case any n-dimensional
non-trivial representations of algebras B,, ,, By m and B, ., of rank 1 are irreducible. Therefore, quotients
Rep, B, », Rep, B, and Rep, By, ,—m by GL,(F) are geometric, i.e. all GL,,(F) - orbits are closed. Hence,
Rep!,’ B, = Rep,, Byn; Repy Bym = Rep, By and Rep(’ By, n—m = Rep, Bun—m.

Consider the variety Rep, By p. We have the following morphism: f, : M,B,, —
MupBnm X pq, 4, (r)T,m) MnBnn—m. We get that

fit (o1, p2) = Gy /F*,

for p1 € Rep,,Byn.m,p2 € Rep,, By n—m,¥ € Rep,, A, (r;) such that *(pl) (pg) 1.

We have to study representation theory of the algebras A, (r;) and Ak(n) for further studying
of morphisms f, : MuBnn — MpBe(Tnm) Xpq 4, riyim) MnBr(Lnn-m) and fi © MpBi, —
M By (T ) [1] X oy Ay (i) [T,m] MnBr (Trn—m)[1].

4 Deformed preprojective algebra and algebra A, (r;).

In this section we will study algebra A,, and its connection with deformed preprojective algebra of some quiver.
Namely, we will prove that these algebras are Morita equivalent. Using representation theory of deformed
preprojective algebra, we obtain that representation and moduli variety Repn.An[(T, m)] and /\/lnAn[(i m)]
are irreducible for any r; € F,i =1,...,n,> . r; = m. Also, we will calculate dimensions of Mn.An(ri)[T, m.
In first subsection we recall notions and facts about deformed preprojective algebra. In second subsection we
will prove Morita equivalence of A, (r;) and deformed preprojective algebra II;(Q) for some quiver Q and

X= (=71, =1, 1).

4.1 Roots and deformed preprojective algebra.

In this subsection we will recall the main properties and notions of quiver and introduce deformed preprojective
algebra. In this subsection, we will consider free-loop quivers. Although, one can generalize all notions and
facts in the case of quiver with loops.

Let @ be a quiver with k vertices. Thus, Qo = {1, ..., k}. Assume @ has no loops. The description of quiver
Q encoded by k x k-matrix xq:

—~

(xq)ij = 0ij — #{arrows from i to j} 46)

Let ZQo be a free abelian group generated by vertices. For each vector & = (a1, ...,ax) € ZQo let supp(d) =
{i € Qo| «a; # 0}. We say that supp(&@) is connected if the full subquiver of Q with vertex set supp(d) is
connected.

Recall that we have Euler form xq : ZQo X ZQo — Z defined by formula:

- —

xo(@ 8) =a-xo-8a, B € ZQo. (47)



Its symmetrization is called by Tits form T, i.e. To(&, E) = xo(4, ﬁ) + XQ(B, @). Denote by ¢q the quadratic
form: ¢g(a) = %TQ(d’, @) = xq(d@,d). Denote by € the coordinate vector corresponding to vertex ¢ € Qo.
Denote by II the set of vectors €;,i € Qo. The matrix A;; = Tg(€, €;) is a Generalized Cartan Matrix (at least
when Q has no loops), and so there is an associated Kac-Moody Lie algebra. This algebra has a root system
associated to it. For vertex i € g, there is a reflection:

refl, : ZQo — ZQo, refli(d) =a —Tg(d,&)s. (48)

-,

It is clear T (&, B) = To(refl;(a), refli( _')) for any ¢ € QQg. The Weyl group is the subgroup W C Aut(ZQo)
generated by the refl;,i € Qo. The set ©,¢(Q) = U, cw (q) wl) is called real roots. 1t is easy go(d) = 1.
The fundamental region is

Fo={adeNQo| To(@¢€)<0 for all €Il and & has a connected support} (49)

The set ©im (Q) = Uyew(q) w(Fo) Uw(—Fgq) is called imaginary roots. Clearly, qo(&) < 0 for any imaginary
root &@. Finally, the root system of @ is defined as ®(Q) = @,.(Q) U @, (Q). An element & € &(Q) NNQyp is
called positive root. A non-zero element & € ZQ) is called indivisible if ged(c;) = 1. Clearly any real root is
indivisible, and if @ is a real root, only +@& are roots. On the other hand every imaginary root is a multiple
of an indivisible root, and all other nonzero multiples are also roots. Recall the connection between roots and
indecomposable representations of quiver.

Theorem 20. (Kac)
e [f there is an indecomposable representation of @ with dimension vector &, then & is a root.

e If & is a positive real root there is a unique indecomposable representation with dimension vector & (up to
isomorphism,).

e If & is a positive imaginary root then there are infinitely many indecomposables with dimension vector &

(up to isomorphism).

Further, we will define deformed preprojective algebra. For free-loop quiver @, let us construct a double
quiver Q¢, that is to an each arrow a € ; we add an opposite arrow a* € Q¢. Define commutator c as element
a,a*] € . For the weig = (A1, Ap) € we define deformed preprojective algebra:
acQr *] € FQ®. For th ight A = (A A FF define def d jecti lgeb

k
(Q) = FQY/(c =) Ne:) (50)

i=1

Multiply all arrows by non-zero t € F*, we get the isomorphism of preprojective algebras:
I5(Q) = I13(Q). (51)

We know already that vector @ = (au, ..., @) is a dimension vector of ITy-representation iff Xa = Zle Nia; = 0.

Fix o € RepQ?[d]. As we know, the space of o decompose into direct sum of V; = Img(e;),i = 1,...,k of
dimension «;,i = 1,..., k respectively. Consider the algebra End[d] = ®End(V;). We can define momentum
map:

s : RepQ?a] — End|[d] (52)
by following formula:
pa(e) = > ola)o(a*) — o(a*)o(a) € End[al. (53)
a€Qy

Thus, Repll;[d] = /ﬁl(Zf:l Aio(e;)).

[

Recall the definition of A-Schur roots. Let us define pg(@) as 1 — go(@). We have the following inequality:

PQ(@) =0 (54)
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Definition The set S5 of A-Schur roots is defined to be a set of @ € N* such that pg (&) > pg (ﬁ_’l)+...+pQ(,6’:.)
for all decompositions & = ﬁ_i + ...+ ﬂ: with B_; positive roots satisfying to X ﬂ_; =0.
We will use the following result from the representation theory of deformed preprojective algebras.

Theorem 21. (Crawley-Boewey) Let (X, &) are such that & € S5. Then Rep 5 115[d] is a reduced and irre-
ducible complete intersection of dimension |&@|* — 1+ 2po(d&). And general element of Rep 5 115[@] is a simple
representation. Thus, dimp M,z 115[d] = 2pg(d).

4.2 Morita-equivalence of algebra A,(r;) and deformed preprojective algebra.

In this subsection we will prove that algebras A,, and preprojective algebra of some quiver are Morita equivalent.
Recall the following useful Morita’s theorem:

Theorem 22. (Morita) Consider algebra A and left A-ideal I. Let I be a direct summand of free left module
A. Assume, we have the identity:
AITA = A. (55)

Then algebras A and Enda(I) are Morita equivalent. In particular, consider the idempotent e € A. If AeA = A,
then algebras eAe and A are Morita equivalent.

Consider quiver @ with n + 1 vertices, which we denote by vy, ..., v,, w. Arrows of the Q are a; with source
w and target v;, i.e. |Qi| = n(see picture 1). Adding opposite arrows a}, we get the double quiver Q¢(see
picture 2) and path algebra F'Q.

v
V3 4

as ay

V2« a2 w > Un—1
Ap—1
a
ap)
(% Un
Picture 1 Picture 2

Let X = (Avys s Auys Aw). Thus, we can construct deformed preprojective algebra Il = II5(Q). As we
know this algebra is a quotient of FQ? by ideal J generated by element

n

T = Z[a:’ a;] — i: Av; €v; = AwCy- (56)
i=1

i=1
Thus, algebra II5 has the following relations:

n n

a;al = f)\vievi,iafai = (Z af)(z a;) = Al (57)
i=1

=1 =1

and relations of the quiver path algebra.
Denote by E the sum »_"" | €,,. Note that II; ETI; = II;. It follows immediately from relations of II;. Using
this fact and Morita’s theorem, we get the Morita equivalence of algebras ElI;E and IIj.
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Proposition 23. Assume A\, # 0. Then there is an isomorphism of algebras:

where r; = —’;\2 ;i =1,...,n. Thus, algebra A, (r;) is Morita-equivalent to deformed preprojective algebra I1y.
Proof. Using multiplication by non-zero element, we can suppose that A, = 1, \,, = —r;,i = 1,...,n. Algebra

IT; is a quotient FQ?/J, where J = FQIxFQ? Using Morita equivalence, we get that algebra El;E is a
quotient of EFQIF by ideal J' = EFQ%:FQYE. Consider generators of EFQ?F - ideal J'. It is trivial that

n *

z = EzE+eyxey, and epre, = (O g af) (O q a;) — ey Ideal J is generated by EzE and e, ze,,, and hence,

i=1 %
J' is generated by ExE and subspace EFQ%e,xe,FQIE. Further, it is easy EFQ%,, = EFQIE(Y""_| a;)
and e, EFQIE = (Y1 a})EFQ?E. Thus, we get that

K3

n

EFQ%,ze,FQIE = EFQdE(Zn: ai)((i a;‘)(i a;) — ew)(D_aj)FQ'E. (59)

i=1 i=1 i=1 i=1
Therefore, algebra ETI;E is generated by elements e;,i = 1,...,n and aja; for all 4,5 = 1,...,n with relations:

n n n

afa; =rie, (Y a)(Q_a)Q_a)(Ya)) = ai)(d_ai)
i=1 i=1 i=1

i=1 i=1 i=1

Elements e;,i = 1,...,n and (3, a;)(>_1_; a}) are generators of the algebra ETI;E.

1=1"

Let us consider the map 9 : A, (r;) = EII{E given by correspondence:

n n

giei, P (O a)(d a)). (60)

i=1 j=1

Direct checking shows us that ¢ is a homomorphism of algebras. Using previous arguments, we get that ¢ is
isomorphism.
O

Fix dimension vector @ = (v, ..., (t,, , @t) € N1 such that (@, X) = 0. M, 5115 [@] the variety of d-modules
of deformed preprojective algebra II;. Let d, be a vector (o, ..., ay,) Consider variety Mg, | An(r:)[d] of
Qy, + ... + a,, -dimensional A,, - modules with properties:

rankg; = ay,,7 =1,...,n rankP = ay,.
Using Morita equivalence, we get the isomorphism of varieties:

Mg IIz[d] = Mg, 1 An(r:)[@]. (61)

Remark. Also, let us consider the unital algebra C(r;) with generators s;,7 = 1,...,n and relations

52 = 184, Zsl- =1. (62)
i=1

It can be shown in standard way that this algebra isomorphic to algebra e,Il5e, and, thus, we get the Morita
equivalence of algebras: C(r;) and II;.

For dimension vector & = (y, , ..., s, , Ay ) denote by M, C(r;)[&,] the variety of ay, X o, matrices Sy, =
1,...,n, such that rankS; = «,, and satisfying to relations (62).

Using this equivalence, we get the isomorphism of moduli varieties:

Mgll5 = Mo, C(ri)[d] (63)
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4.3 Crawley-Boewey condition for dimension vector @ = (1,...,1,m).

In this subsection we will study the properties of variety M,, (1,... 1,m)(An) via Morita equivalence with deformed
preprojective algebra II5 of the quiver Q.

Proposition 24. Consider dimension vector & = (1,...,1,m) form € {2,...,n—2}. Then vector & = (1, ...,1,m)
is a X - Schur root (i.e. & € Xy) for any vector A = (—r1,...,—7ryn, 1) such that ri + ... + 1, = m.

Proof. Recall that we have to prove that pg(&) > pQ(Bl) + ...+ pQ(ﬂ ) for any non-trivial decomposmon
a= ﬁ_i + .. B_;, where ﬁ_;-,i =1,...,s are positive roots and (ﬂl, _’) = 0. It is clear that last component of BZ- is
m; € {0,...,m}. Among other components there are n; 1’s and n — n; zeroes. We have the following relations:
S mi=m, > . ;n; =n. It is clear that matrix x¢ has the following form:

11 -1 . -1
0 1 0 .. 0

Xe=\ L (64)
0 0 0 1

—

It can be shown in usual way that pg(&) =1 — xo(&,d) = (n —m —1)(m —1) and pQ(B;) =1- XQ(B;v Bi) =
(n; — m; — 1)(m; — 1). Thus, we have to prove the following inequality:

(n—m—1)(m—1) >Z —m; —1)(m; — 1).
Transform it as follows:
(n—mm-m-—(n—-m)+1 >Z(ni—mi)mi—2ni+s.
i=1 i=1

Finally, we get

m>z i —mi)m; +s—1. (65)
for n;,m; € Ng such that Zle n; = n and Z%:1 m; = m. Further, let us give some remarks about n; and
m;. Fix root 8; = (81, .. Bin, Bint1 = m;). We have two cases: m; = 0 or m; > 0. In the first case, using

non-triviality of 3;, we get n; > 0. In the second case, X @ =m; + Zl":l r18:;1 = 0. Hence, n; > 0. Thus,
n; > 0 for any root §3;. Using inequality (54), we obtain:

(m—mi—l)(mi—1):(ni—mi)mi—ni+120

Thus, (n; —m;)m; > 0. It means that n; > m; for alli=1,...;s. Also, we have n —m > 2 and m > 2.
Let us prove the following lemma.

Lemma 25. Let X,Y be integers and X, Y > 2. For any s > 2 and any partitions X = x1 + ... + 5 and
Y =y1 + ... + ys satisfying to conditions:

® Ti,Y; € N07
o 27 +y? >0 foranyi=1,..s
we have the following inequality:

XY>Z:ciy¢+sfl. (66)

i=1
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Proof. of lemma. Fix partition § = (X =21 + ... + 25, Y = y1 + ... + ys). For simplicity, let us denote by f(8)
the Zle z;y; + s — 1. Without loss of generality, let us assume that z;,y; > 0 fori = 1,...,ky, ; > 0,5, =0
fori=ki+1,....kpand x; =0,y; >0fori =ky+1,...,s:

X=z1+...+xK, + 2,41+ ..+ 2k, + 0+ ... + 0.

Y=y14+...+Yp, +0+ ..+ 0+ yrpt1 + ... + ys.

Denote by Xy and Y the sums Zf;l x; and Zf;l y; respectively. By X7 and Y; we denote sums Zfikl 41T
and Zf:kz-i-l yi. Itisclear X = Xo+ X1 >2,Y =Yy +Y; >2and X; > ky — k1,Y] > s — ky. Note that
k1 +X14+Y, —12>s—1. Let us prove that

k1
XY > itk + X +Y; - L. (67)

i=1
Let us write XY in the following manner:
XY = (Xo+ X1)(Yo + Y1) = XoYo + X1Yp + XoY1 + X1 V1.

We will consider three cases: k1 > 1, k; = 1, k; = 0. Let us consider the first case. We have the following
inequality: XoYy > Zf;l x;y; + k1(k1 — 1) (because of z;y; > 1 for all 4,5 = 1,....k1), X1Yy > k1 X1, XoY7 >
k1Y7. Thus, we obtain:

k1

XY > inyi +ki(kr — 1)+ k1 Xh + 1Y+ XY
i=1

Therefore, inequality (66) transforms to
kil — 1)+ kXy + kY + X0V >k — 1+ X, + 1
We can transform this inequality as follows:
i+ X1 —1)(ki+Y1-1)>0

Therefore, first case is proved.

Second case. If k; = 1, then we have the partitions: X = 1 + 29+ ...+ 2, + 0+ ...+ 0 and ¥ =
Y1 +0+..4+0+ Yko+1 + ...+ Ys- AISO7 X1 = ZfiQ i, Y1 = Zf:kz-l-l Yi and T —|—X1 Z 27 Y1 + Y1 2 2.

It is easy XY = z1y1 + 21Y1 + X1y1 + X1Y1. We can rewrite inequality (67) as follows:

1 +nXh + X0 > X+ Y.

This inequality is true, because x1 + X1 > 2 and y; + Y7 > 2.
Last case ky =0. Wehave X =21+ ...+ 2, + 04+ ... 40, Y =04 ... + 0+ Yy 41 + ... + ys. Inequality (67)
transforms to:
XY >X+Y -1

It is true, because X,Y > 2. Lemma is proved O
To the end of proof of the proposition, let us apply lemma in the case y; = m;,x; =n;, —m;,i =1,...,s. O

Corollary 26. Fiz m € {2,...n — 2}. For any r1,...,7, € F such that r1 + ... + r,, = m, general repre-
sentation of algebra A, (r;) with dimension vector (1,...,1,m) is simple. Also, variety My A, (r;)[(1,m)] and
Rep,, A, (r:)[(1,m)] are irreducible and have dimensions 2(n—m —1)(m —1) and 2(n —m —1)(m —1) +n?—1
respectively.

Also, using Morita equivalence, we have the following:
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Corollary 27. General element of Rep,, A, (r:)[(I,m)] is a simple representation.

Proof. Using theorem of Crawley-Boewey and proposition 24, we obtain that general Ily-representation of
dimension vector (1, ...,1,m) is an irreducible for any X= (=7r1y..., —Tn, 1) such that vy +... 4+ 7, = m. Applying
Morita-equivalence, we get the required. O

Let us calculate automorphism group of n-dimensional A, (r;) - representation p. Let us introduce the
notion graph G, (p) of the representation p. This graph has n vertices labeled by 4,¢ = 1, ..., n corresponding to
generators ¢;,¢ = 1,...,n. There is edge between vertices ¢ and j iff p(q; Pg;) # 0 or p(q; Pg;) # 0. It is easy that
if we have two isomorphic representations p’ and p, then G, (p) = G,(p’). It means that we have well-defined
notion of graph of A, (r;)-module.

Proposition 28. Assume that r; # 0. Consider n-dimensional representation p of Ay (r;) of dimension vector
(1,...,1,m). Then group Aut 4, (,,)(p) is an algebraic torus and the following statements are equivalent:

o Auta,r)(p) = (F*)% s <m,
e graph G,(p) has s connected components.

Proof. It is easy that vector space of p has a basis vy,...,v, such that ¢;v; = d;;v;. Further, consider f €
Aut 4, (r,y(p). Then f(v;) = ayv;, where o # 0. Thus, Auty4, (r,)(p) is a subgroup of algebraic torus (F*)".
Assume that p(g; P)v; = x;;v; for some z,;; € F and any i, j. We get the following identity:

f(p(qiP)vj) = a;p(q; P)v; = ajzijv;. (68)

From other hand, we obtain the following:
f(p(qiP)v;) = f(zivi) = iz, (69)

Hence, z;;(a; — ;) = 0 for any 4, j. Further, consider graph G,, of representation p. This graph has n vertices
labeled by ¢;,¢ = 1,...,n. There is edge between ¢; and g; iff 2;; # 0. Note that G, is connected iff o = o5
for any i, j, i.e. Auty, (r,)(p) = F*. Therefore, we get that Aut 4, (,)(p) = (F*)* iff graph G, has s connected
components. Also, it can be shown in usual way that if Aut 4 (.,)(p) = (F*)® then rankP > s. O

Corollary 29. Ifr; #0,1,i = 1,...,n then for any representation p graph G, (p) has no components consisting
of one vertex.

Proof. Assume that one connected component has one vertex. Without loss of generality, number of this vertex
is 1. Then we have the following relations: ¢ Pg; = 0,7 = 2,...,n and ¢; Pq1 = 0,5 = 2,...,n. Using relation
Z?:1 g; = 1, we get that ¢ P(1—¢1) = 0. Multiply by P from right side, we obtain: (1 —g¢;)Pg1P. Calculating
trace, we get:

Tr(1 — q1)Pg1 P = TePgu P — Trq1 Pgu P = TrPgy — ri{TePgr = (1 —ry)r1 #0 (70)

Contradiction. O

5 Algebra ./le(n) and its moduli variety.

In this section we will study algebra Ay, (r;). Assume that r; #0,i=1,..., k.
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5.1 Homological properties of algebra jk(rl)

Denote by e, e;,i =1, ..., k the trivial path in vertices. Denote by F'Q) the path algebra of quiver (). Consider
two-sided ideal I generated by elements «; 0, ; —7i€;. Denote by Ag the element e, + Zle(ei F Qi+ Qi)
One can prove that gk(n) is a homotop of Sg with element Ag. One can show that Ag is well-tempered
element (cf.[1]) Consider the quotient Sg = FQ/I, where @ is a quiver with vertices labeled by w,v1,...,vx,
Arrows oy and g, . ATTOWS O 4, Oy 3.t = 1, ...,k connect vertices v;, w and w, v; respectively (see picture).
Note that deformed preprojective algebra is a quotient of Sg by relation: Z;;l Oy i Oy — Ty €ap-

Picture 2

Further, consider algebra Sg. Let us apply Morita’s theorem to algebra Sg and idempotent e,,. It is easy
that SgewSqg = Sg. Thus, algebras Sg and e,,Sge,, are Morita equivalent. One can show that algebra e,,Sgew
is generated by $; = QuiQiw,t =1, ..., k. It is easy that

52 =r;s;. (71)

It can be shown in usual way that algebra e,,Sge,, is an unital algebra generated by s; satisfying to relations
(71). One can show that this algebra is isomorphic to Pr(I'[k]), where T'[k] is complete graph with k vertices.
Using subsection 3.1, we obtain that Pr(I'[k]) is a homotop of path algebra of double quiver Qrpy with k
vertices. Using properties of homotopes, we get the following proposition:

Proposition 30. Hochschild dimension of Ag(r;) is 2.

Proof. Applying theorem (cf [1]) and Morita invariance of Hochshild dimension, we get the required statement.
O

Of course, we have exact sequence of Ay, (r;) - bimodules:
0 ——= Al (r;) — Ay(r;) —>F —>0 (72)

where ¢ is augmentation, i.e. €(1) = 1,¢(P) = e(g;) = 0. Using basis of A (r;), we get that A (r;) - bimodule

Al (r;) is a projective left Ay (r;) - module, and we have the following isomorphism:

AL (ri) = Oy A(ri)a ® Aw(ri) P (73)
This augmentation has the following modification:

O—>j;+(h‘)4>ﬂk(ri) —;AFP@F(l—P)HO (74)
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Algebra FFP & F(1 — P) is an unital algebra generated by P. ” Augmentation” €4 is defined by formula:
EA(l)zl,eA(P):P,eA(qi)ZO (75)

It is easy that €4 is a homomorphism of algebras.
Let us prove the following proposition:

Proposition 31. ./2(2_4_(711) is a projective Ay (r;) - module.

Proof. Let us restrict the €4 to ./Z,Jg (r;). Denote this restriction by €. Therefore, we have the following exact
sequence:

0 — A (r)) — Af (r;) —> FP —>0. (76)

It is easy that Ay (r;)g C /Irr(rl) Thus, we have the induced map: Ag(r;)P — F. It can be shown in usual
way that kernel of this map is a .Zk(m-) - module: @leﬂk(ri)qu. Therefore, we get the following isomorphism
of left. Ay (r;) - modules:

AT (rg) = @ A(r)ai P @ Ag(ri)gi. (77)

Also, we have the similar decomposition of ﬂ;*‘(m) as right module. It is easy that %qu is an idempotent,

hence .Zk(ri)qu is a projective Ay, (r;) - module. The rest is trivial. O

There are two 1-dimensional Xk(ri)—modules FP and F(1 — P). One can check that ¢;,7 = 1,....,k act
trivially on F'/P, P acts as identity operator. Also, P,q;,i = 1, ...,k act trivially on F(1 — P). Proposition 31
show us that exact sequence (76) as projective resolutions of F'P respectively. Of course, sequence (72) is a
projective resolution of F'(1 — P).

Also, note that we can find connection between algebra Ay (r;) and Pr(I'[k]) more directly. Namely, if we
consider the following subspace Ay (r;) PAy(r;), i.e two-sided ideal of Aj(r;) generated by P. It can be shown
in usual way that Xk(ri)Pﬁk(ri) = ,Z;(rl) Actually, using relation ¢; Pg; = r;q;, we can get all ¢;,i = 1,...,k
and hence, we can get any element of .Z;(n) Consider algebra PA, (r;)P. One can show that this algebra is
isomorphic to Pr(T'[k]). This construction is similar to construction of Morita-equivalence of fundamental group
and Poincare grouppoid. Also, if we consider two-sided ideal of Ay (r;) generated by Zle g;, then we get the
following identity: (Zle qi)jk(ri)(Zle ¢) = .Z;'J’ (r;). Also, we obtain that algebra (Zle ql)ﬂk(n)(Zle qi)
is isomorphic to path algebra FQr of double quiver Qr with k vertices.

5.2 Endomorphisms and automorphisms of .Zk(n)—modules.

Consider n-dimensional Aj(r;)-module V. Applying functor Hom Xk(m(—,V) to sequence (74), we get the
following exact sequence:

0 ——Homyg \(FP®F(1-P),V) —>y —> Homgk(m)(j'k*"“(ri), V) (78)
HExtkk(ri)(FP@F(l —P),V) ——>q. (79)

Also, applying functor — ® Au(ro) V to (74), we get the following exact sequence:
0 —> Tor* (PP F(1 - P),V) —= AT (r) @5,V —>V (80)

— = (FPOF(1-P)®z )V —>0. (81)

Denote by Kerp, Keri_p, Cokerp and Cokeri_p the /Tk(rl) - modules: Hon1jk(m(FP7 V),
Hom 7z )(F(l —P),V), FP®g (.., V and F(1 - P) ® Ao (r) V respectively. It is easy that Cokerp and Kerp

i
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are direct sum of several copies of F'P’s, Coker;_p and Ker;_p are direct sum of several copies of F(1 — P)’s.
Denote by Im the image of A" (r;) B Aoy VIV A (r;)-module Im has the following description: consider

subspace of V' generated by Img;,j = 1,...,k and ImPgq;,j = 1, ..., k. It is easy that this subspace is .Zk(ri) -
submodule and one can show that this submodule is Im. It is clear that we have the exact sequence:

0 Im %4 Cokerp @ Cokeri_p —— 0 (82)

Lemma 32. Any ./Tk(ri)-endomorphism g of V induces .Zk(ri)-endomorphisms g and ¢" of Im and
Cokerp @ Coker;_p respectively. Also, we have the following diagram:

0 Im 7% Cokerp @ Coker,_p —=( (83)
ig/ lg J/QN
0 Im 1% Cokerp @ Coker;_p — 0

Also, ¢ transforms Cokerp into Cokerp and Cokeri_p into Cokeri_p.

Proof. 1t is sufficient to prove that restriction of g to Im is endomorphism of Im. As we know, Im is generated
by ImPgq; and Img;. It is clear that g(Pg;v) = Pg;g(v) and g(g;v) = ¢;g(v). Therefore, g preserves Im. Denote
this endomorphism of Im by ¢’. Thus, we have induced endomorphism ¢’ of Cokerp @ Coker;_p. Also, it is
easy that ¢g” preserves Cokerp and Coker;_p. O

Proposition 33. We have the following exact sequence:

0 —> Homj)c (Ti)(Cokerp, V)® Homgk( _)(Cokerl,p, V) —» Endjk(”)V - s Endﬁk(”)Im. (84)

Moreover, Homvzk(m (Cokerp, V) = Homp(Cokerp, Kerp) and Homgk(m) (Cokery_p, V) = Homp(Coker;_p, Ker;_p).

Proof. Applying functor Hom jk(”)(—, V) to sequence (82), we get the following sequence:

0—> Hornjk(m)(Cokerp7 Ve Hom g, ,)(Cokerl_p, V) ——=Endg )V — Homyg (. (Im, V). (85)

T

Let us prove that Homjk(”)(lm7 V)= End 5, (Ti)Im. Applying functor Homﬁk(”)(Im, —) to sequence (82), we
get the sequence:

0 —> Endjk(ri)hn - Homjk(ri) (Im,V) —» Homzkm) (Im, Cokerp @ Cokery_p). (86)

Direct calculations show wus that Hom An( _)(Im, Cokerp @ Cokeri_p) = 0. Further, calculate

T4

Homjk( _)(Cokerp, V). Denote by cokerp the dimension of Cokerp. As we know, Cokerp = Fpeokerr  Using

i

projective resolution, we get the following exact sequence:
00— Hom;k(n) (COkeI'p, V) —_— Homﬂk (o) (Az (Ti), V)cokerp o Hom.;(k(ri) (Aer (”)7 V)cokerp (87)

It can be shown in usual way that Hom z . ,(Cokerp,V) = Hom g, ,.,(Cokerp, Kerp) = Homp(Cokerp, Kerp).
One can prove analogous statement for Hom A (Tl)(Cokerl, p,V). O

Consider n-dimensional By ,-module V. Using diagram (42), we get By(I'y, ) - module ¢*V, By (T n—m)
- module ¢*V and Ak(r;) - module i* o *V = i"* 0 ¢"*V. Denote these modules by V. Consider By (T .,) -
module V. As we know from [1], we have the following exact sequence:

0 — Homp,(p, ,.)(Coker’, Ker') —— Endp, (1, )V —= F ——=0, (88)
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where Coker’ and Ker’ are By(T'x,) - modules Homp (v, (F,V) and F' ®p,(r, ,.) V respectively. Note that
this exact sequence is split, i.e. Endp, (r, . (V) = F@&Homp, (1, ,,)(Coker’, Ker’). It can be shown in usual way
that i*Coker’ = Coker;_p and i*Ker’ = Ker;_p. One can consider the case of algebra By(I'y n—m). Namely,
we have the exact sequence:

00— HomBr(pk,nﬂn)(Coker”, Ker”) —— EndBr(Fk,nfvn)V — [ — 0, (89)

where Coker” and Ker” are By(I'y n—m) - modules Hompg (r, ,_.y(F,V) and F ®p_(r, ,_,.) V respectively. Tt

can be shown in usual way that i"*Coker” = Cokerp and i*Ker” = Kerp. Also, note that
Homgz . (FP,F(1—P))=Homg . (F(1—P),FP)=0. (90)

It is easy that if s € Homp, (r, ,.)(Coker’,Ker’), then we can define element of Endp, (r, . (V) as follows. We
have natural morphisms: V' — Coker’ and Ker’ — V. Thus, we have the element of Endp, (r, ,,)(V) defined as
composition:

V — Coker’ — Ker’ V. (91)

We will denote this endomorphism by s.
Thus, we can define composition of s, s, € Homp,_(p, ,.)(Coker’, Ker). Analogously, one can define compo-

sition in the case of algebras By (T'k 5—m) and ./Tk(ri). It is easy that natural morphisms:

EndBr(kam)(V) — Endﬁk(”

)(V)7EndBr(Fk,n77n)(V) — Endjk(rL)(V) (92)
are ring monomorphisms.
Proposition 34. Subrings Endg,r, . (V) and Endp,(r, ,, ) (V) of End g, (V) commute.

Proof. Actually, consider a1 + s; € Endp,(r,,.)(V), a2l + s2 € Endp, (., ,.)(V), where s;1 €
Homp, (r, ,.)(Coker’,Ker’) = Hom]k(r_)(Cokerl_p,Kerl_p) and sy € Homp (r, . (Coker” Ker”) =
Hom jk(rﬁ)(CokerP, Kerp). As we know, endomorphism $§;7 o §3 is defined as composition:

YV — Cokerp ——> Kerp Y Coker;_p -2 Kerp \% (93)

As we know, Kerp = @F P and Coker;_p = @F(1 — P). Thus, composition Kerp — V' — Coker;_p is zero by
(90). Hence, 57 o 83 = 0. Similarly, 83 o 57 = 0. Therefore,

(a1l + s1) 0 (agl + s2) = ayaal + ays2 + agsy = (aal + s2) o (gl +s1), 0 € Fyi =1,2. (94)

Note that we have the following identity:
(114 81) 0 (a2l + 52) = ag (@l + s2) + ag(a1l + 1) — agasl. (95)
O

Recall the following trivial facts. It is well known that for any algebra A and A-module V: Auts(V) is a
group of units of End4 (V). Also, note that for any algebra A and A - module V' group Auts (V') has central
subgroup F*.

Consider the following groups: Aut g, . \(V), Autp,r, . (V), Autp,r, ) (V) and Aut z . (Im). It is
easy that we can consider Autg (r, ,_,(V), Autg r, . (V) as subgroups of Autjk(”)(V). Also, we have

a natural group homomorphism: f : Autg . (V) — Aut g . (Im). Fix element g € Aut g, (V) of the
following type:

g =al+ s1 + s9,51 € Homp(Cokerp,Kerp), so € Homp(Coker;_p, Ker;_p) (96)
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Using formula (95), we get the following factorization of g:

1 1
g=(a11+ 07251) o (anl + ;152) € AutBr(kam)(V) “Autp vy .y (V), (97)
where ajay = «. Consider quotients Aut g, . (V' )/ F*, Autp r,,\(V)/F*, Autg r,.._ . (V)/F* and
Aut;k(m)(lm)/F*. We have natural morphism: f Aut g, (V)/F* — Autp,r,.,.)(V)/F*. Formula (97)
means that Kerf = Autg (r, ,.)(V)/F* x Autp r, . _,.)(V)/F*. Using these arguments, we get the following
proposition:

Proposition 35. Fiz By, - module V.. Consider V' as module over By(T m), Br(Tk n—m) and A (r;) - module
by commutative diagram (42). We have the following immersion of the varieties:

Aut g, vy ) (VNAUt 5, () (V) Autp, (v, ) (V) © Aut g, ., (Im)/F” (98)

We can introduce the notion of graph Gy(p) of A(r;) - representation p. This notion is quite similar to
notion of graph of A, (r;)-representation p. Graph Gi(p) has k vertices labeled by i,i = 1,..., k. Two vertices
i and j are connected by edge iff p(¢; Pg;) # 0 or p(¢;Pg¢;) # 0. Also, we have well-defined notion of graph of
Aj,(ri)-module.

Let us formulate the following proposition:

Proposition 36. Assume that r; # 0. Consider jk(ri)—representation p of dimension vector (1,...,1,m).
Suppose that p satisfies to condition: space of representation is generated by Imp(q;),Imp(Pgq;). Then group
Autjk(ri)(p) is a subgroup of algebraic torus (F*)F. Assume that (F*)* C Autjk(”)(p) then graph Gi(p) has
at least s connected components.

Proof. Denote by V,, the /le(rl) - module corresponding to p. Consider f € Autjk(m(p). Denote by v;,7 =
1,..., k the eigenvectors of p(g;),i = 1,..., k. It is easy that f(v;) = ayv; for some «; € F* i =1,...,k. Consider
Pv;,i =1,...,k. Clearly, f(p(P)v;) = a;p(P)v;. Since space V, is generated by Imp(g;),Imp(Pg;), we get the
definition of f on V. Therefore, we have immersion of groups: Aut z,,.\(p) C (F*)k.

We have the following relation: p(q;)p(P)v; = x;;v; for some z;; € F'. Applying f, we get the following:

f(p(ai)p(P)v;) = p(ai)p(P) f(vj) = ajp(q:) p(P)vj = ajxijui. (99)
From other hand, f(p(q;)p(P)v;) = f(zijv;) = x;505v5. Therefore, z;;(o; — a;) = 0. Note that if z;; = 0, then
p(qiPv;) = p(¢; Pgjv;) = 0 and p(g; Pg;) = 0. The rest is easy. O

Also, let us note the following useful property:

Proposition 37. Consider Ay(r;) - modules Im and V from ezact sequence (82). Then graphs G,(Im) and
G (V) are isomorphic.

Proof. Tt is easy that Gi(Im) C G (V). Thus, We have to show that G (V) C Gi(Im). Recall that submodule
Im is generated by vectors gjv,v € V and Pg;v,v € V. It is easy that if ¢;Pg;v # 0 for some vector v € V,
then ¢; Pg;v = ¢; Pg;j(g;v) # 0 for some vector g;v € Im. Thus, if vertices ¢ and j are connected in G(V'), then
they are connected in G (Im) and, hence we have proved the required statement. O

5.3 Properties of M, A,(r;)[(1,m)].

Consider algebras Pr(I',, 1), Pr(I'y1). It is easy that A, (r;), ,Zk(ri) are quotients of Pr(I',, 1) and Pr(I'y 1) by

s

), P
relations: ¢; Pq; —r;q;,t =1,...,n, Z 14— 1 and q; Pg; —r;q;,1 = 1, ..., k respectively. It can be shown in usual
£,m]

way that Rep,, A, (r:)[1, nd Rep,, A (r;)[1,m] are fibers of morphlsms

trn1 : Rep, Pr(Tn1)[1,m] — F"~ 1 tr.1 : Rep, Pr(Ty1)[1,m] — F* (100)
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respectively. Morphisms ¢r,, 1 and ¢ry 1 are defined by formulas: tr, 1 : p — (Trp(Pq1),...,Trp(Pg,)) and
trii 2 p — (Trp(Pq),...,Trp(Pg)). Also, F"! is a affine space with coordinates r1,...,7, and relation
r1 4 ..r, =m. F¥ is a affine space with coordinates 71, ..., 7.

Fix m € {2,...,n — 2}. Consider following commutative diagram of varieties:

- trn1

RepnPr(Fn,l)[(lam)} — ! (101)

pr1 l pr2

t’rk 1

Rep, Pr(l;1)[(1,m) ——— F*

Morphisms pry, pro are natural projections defined by formulas: pri : (q1,....qn, P) — (q1,.-,qx, P)

=

and pro : (r1,...,7n) — (r1,..,7%). As we know from corollary 11, varieties Rep, Pr(I',1)[(1,m)] and
Rep,,Pr(T';.1)[(T,m)] are irreducible. Clearly, morphisms pr; and pry are surjective.

Lemma 38. Morphism try 1 are surjective.

Proof. As we know, fibers of morphism tr,, 1 are varieties Rep,, A, (;)[(1,m)]. Recall that algebra A, (r;) and
IT5; with vector )= (=71,..., =Tn, 1) are Morita-equivalent. It is well-known that there exists II-representation
of dimension vector (1,...,1,m) iff r; + ...+, = m. Thus, Rep,, A, (r;)[(I,m)] is non-empty for any ri,...,,
such that r1 + ... + r, = m. Composition of morphisms trr, , o pro is surjective, and, hence, morphism #ry 1 is
surjective. ]

Proposition 39. Consider general n-dimensional representation p with dimension vector (T, m) of algebra
Pr(T'y.1). Then we have the following cases:

o ifn>k+m,m >k, then dimpAutpyr, ,)(p) = (n —m —k)*> + (m — k)* + 1,
o ifn<m+k,m >k, then dimpAutpy(r, ,)(p) = (m —k)*+1,

o ifn>m+k,m <k, then dimpAutpyr, )(p) = (n —m —k)> +1,

o ifn <m+k,m <k, then dimpAutpyr, )(p) = 1.

Proof. Fix representation p € Rep,Pr(T'y1)[1,m]. Denote by V, the Ay, (r;) - module corresponding to p.
Assume that r; = Trp(Pg;) # 0, then we can consider p as representation of Ag(r;). In this case, using sequence
(84), we get the following:

dimFAutgk(”)(Vp) < dimpHom g (Coker p, Kerp) + dimp(Coker— p, Ker;_p) + dimFAutjk(ri) (Im), (102)
where Im is a Aj (r;)-submodule of V, generated by Imp(q]) and Imp(Pg;). Consider subvariety U C
Rep,, Ay (r;)[1,m] of all representations p € Rep, Ay (r;)[I,m] satisfying to conditions:

e dimpCokerp = dimpKerp = m — k if m > k and zero if m < k,
o dimpCokeri_p =dimpKeri_p=n—m—kifn>m+k and zeroif n <m +k

o Aut; Im = F*.

A (r3)
If Aut Ek(”)lm = F*, then inequality (102) transforms to identity. It can be shown in usual way that sub-

variety U is dense in Rep, Ay (r;)[1,m]. Further, since tri,1 is surjective, we get that tr;&(U) is dense in
RepnPr(Fk,l)[f7 m. O

Corollary 40. Consider variety M, Pr(Ty 1)[I,m]. Then we have the following cases:
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e ifn > ktm,m >k, then dimp M, Pr(Ty1)[1,m] = 2k(n—1)+2m(n—m)—k(k—1)—n?+(n—m—k)>+(m—k)*>+1 =
K —k+1,

e ifn <m+k,m >k, then dimpM,Pr(T1)[1,m] = 2k(n—1)+2m(n—m) —k(k—1)—n?>+(m—k)>+1 =
2kn —k+2mn —m? —n? —2mk +1,

o ifn > m+k,m <k, then dimpM,Pr(T1)[1,m] = 2k(n—1)+2m(n—m)—k(k—1)—n>+(n—m—k)>+1 =
—k—m?+2mk + 1,

e ifn < m+km <k, then dimpM,Pr(Ty1)[I,m] = 2k(n — 1) +2m(n —m) — k(k — 1) —n® +1 =
2kn — k + 2mn — 2m? — k? —n? + 1.

Proposition 41. Variety Repnjk(ri)[(f, m)] is irreducible for any (ry,...,m,) € F*. And, hence, variety
M A (r)[(1,m)] is irreducible too.

Proof. Fix point pt = (r1,...,7;) € F¥. Recall that trl?kl_l(pt) = Rep,, Ay (r)[(I,m)]. Denote by U’ the affine

space pry 1(pt). Thus, we obtain the following commutative diagram:

tr. (U) U’ (103)

pri l pr2

Repn"zlvk (Tl)[(fv m)] —pt

Consider surjective morphism trp, | : trl?il(U’) — U’. Using corollary 26, we obtain that for any point
u=(ri,...,ry) € U’, variety trl?jl (u) = Rep,, A, (r;)[(1,m)] is irreducible and has dimension 2(n—m—1)(m—1).
Recall the following property of morphisms: if Y is irreducible, morphism f : X — Y is a dominant, all fibers are
irreducible and has the same dimension, then X is an irreducible variety. Using this property, we get tr;ﬂlyl U
is irreducible for any irreducible U’ C F n=1  Because of morphism pr; is surjective, we obtain that variety
Rep,, A (r;)[(T,m)] is irreducible. O

As we know from proposition 26, morphism ¢r, ; is equidimensional. One can prove that morphisms pr;
and pro are equidimensional. Using irreducibility of the varieties and surjectivity of the morphisms, we get that
morphism try 1 is equidimensional.

Consider the following commutative diagram:

Rep, Pr(T,)[(T, m)] VI S R ) P — (104)

- Th,1 - Try,1
Rep,,Pr(Ty1)[(1,m))] : M, Pr(Ty1)[(1,m)] — F*k.

Tn,1

where 7, 1,71 are natural surjective morphisms, morphisms Tr, 1, Tr;; are defined obviously. Clearly,
Trp10mp1 =trp1, Trp1 oM = trg 1.

Proposition 42. Morphism Try 1 is equidimensional. For k <n and anyr; € F,i=1,...,k
dimpRep,, Ay (ri)[(T,m)] = k(2n — k — 2) + 2m(n — m). (105)
There are several possibilities for My Ay (r:)[(T,m)]:
o ifn<m+k, m<k, then dimpM, A (r;)[(T,m)] = k(2n — k — 2) + 2m(n — m) — n2 + 1.
o ifn>m+k, m<k, then dimpM,Ay(r))[(I,m)] = k2n—k—2)+2m(n—m) —n%+ (n—m—k)2+1 =
(2% —m —1)(m — 1),
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e ifn<m+k, m>k, then dimpM, A, (r)[(T,m)] = k(2n — k —2) + 2m(n —m) —n2 + (m — k)2 +1 =
2k+m—-n—-1)(n—m-—1),

o ifn>m+k, m > k, then dimp M, Ay (r;)[(T,m)] = k(2n—k—2)+2m(n—m)—n2+(n—m—k)2+(m—k)>+1 =
(k—1)2.

Proof. Since try 1 and pry are surjective and equidimensional, we get that pry otr, 1 = try 1 o pry is equidimen-
sional.

Let us formulate the following useful obvious statement: Assume that X,Y,Z are irreducible varieties.
Morphisms f: X — Z,g: X =Y and h : Y — Z are surjective morphisms with relation: f = hog. Suppose
that f is equidimensional. Then h and g are equidimensional.

Using this statement and surjectivity of pr; and try 1, we obtain that pr; and try; are equidimensional.
Also, we get that Try; and 7, are equidimensional. Also, we get that morphism paq is surjective and
equidimensional.

As we know from corollary 11, dimzRep, Pr(T,1)[(T,m)] = n(n — 1) + 2m(n — m). Using dimension of
fiber, we get dimpRep,, Pr(Tx1)[(T,m)] = n(n—1) +2m(n—m) — (n—
of try,1, we obtain that

k)(n—k—1). Using equidimensionality

dimpRep, Ay (ri)[(T,m)] = k(2n — k — 2) + 2m(n — m).
Analogous arguments prove the rest. O

Let us come back to algebra F'Qr(x) from subsection 5.1. Denote by 7,4 = 1,...,k and ;; the vertices and
arrows of the quiver Qpp. For any i = 1,...,k, let us denote by e; the projectors corresponding to vertex v;.
As we know, we have the following isomorphism of the algebras:

k k
FQr = (3 a)An(ri) (3 a0 (106)

defined by rule:
e; — G, Bij — qiPg; (107)

Thus, we have the following isomorphism:

TrFQriy = FQri/[FQrpy, FQrpy] = Te A (rg) = AL (ra) /[ATT (1), AT (r2)] (108)

Actually, consider element ¢; P. We have the following identity: ¢;P —r;q; = ¢; P — ¢; Pq; = [q; P, ¢;]. Therefore,
any element of type Pg;, P...Pq; P can be expressed as follows: ¢;, P...Pg;, + commutators. It is easy that
Tr Ay (r;) = FIrl @ FTrP & ’I‘rﬁﬁ(n) Denote by MQF[H[T] the variety of FQr) - modules of dimension
vector 1. We have the following result:

Proposition 43. o My Ay (r)[1,m] € MQy[1].

o ifm>k,n>m+k, then My, Ap(r)[1,m] = MQy[T].

Proof. Prove the first statement. There is a functor: 6, : .Zk(ri) — mod — FQrpg — mod defined by correspon-
dence:

0, V»—>H0mA .Ak (r; qu, . (109)

Consider morphism M Ak(rl)[l m] — MFQryy[1 ] defined by this correspondence. It is well-known from
geometric invariant theory that point of moduli variety corresponds to closed orbit. Using this statement, we
get that two A (r;) - modules Vi and V5 such that [V1] = [Va] € M wAg(r) iff their characters are the same, i.e.

Try, (z) = Try, (z) for any = € A(r;). Let us prove that if V4 and V; corresponds to fixed W € MFQryy[1 1],
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then characters of V7 and V4 are the same. Using isomorphism (108), we get that Try, (z) = Try,(z) for any
T € .Z',fr(n) and Trl = n, TrP = m. Thus, we have proved the first statement.

Using isomorphism FQr;) = Zle qijk (7'1')2?:1 i, we get the functor: 05 : FQrpg — mod — ./Zk(ri) — mod
defined by rule:

k
Oy : W — Ak(ri) Zqi ®FQF[k] w. (110)
i=1
Fix FQr-module W. In this case 02(W) € MoarAr(r;)[T,k]. We can consider the following Ay (r;)-module:

FPem=Fk) ¢ (1 — P)®(=m=k) ¢ 0, (W) € M, Ar(rs)[I,m]. Since 6; and 6, are adjoint, we get the required
statement. 0

As we know, we have analogous statement for algebra B, (I")(cf.BZ). Let A(T") be a Laplacian of graph T
Let us formulate the following useful proposition for M, B, (T")[1]:

Proposition 44. We have the following immersion: M, By(T)[1] C (F*)"*H1() " Variety M,, Bp(T)[1] is given
by condition rankA(T') < n. In particular, if |V/(T)| < n, then M, Bp(T)[1] 2 (F*)+H: (D),

Also, note the following useful property of varieties M, B,(T'): if n; < ng, then there is an immersion:
M, Br(D)[a] = My, Br(T')[e] defined as follows. Fix B, (T")-module W of dimension ny. Consider direct sum:
W @ F™~ ™ where F is a trivial B,(I')-module. One can show that this correspondence is an immersion.

Recall that we have morphisms 7 : .Zk(n-) — Be(Tk,m) and ¢ : Be(Tkm) — FTk. Thus, we have the
following useful morphism: B

TrFQy = TrA T (r;) — TeBf (Tkm) = TeDk m, (111)

where TrI' ,,, is a vector space of free loops in the graph I'y ,,. Also, we have homomorphisms of symmetric

algebras: _
S*TrFQy = S*Tr A (1) — S*TrBe(Tkm) = S TrT e m (112)

Let us describe this morphism in coordinates. Consider element i(Trg;, P...q;,P) € S*TrBy (T m). It is easy
that
i(Trq;, P...q;, P) = Trq;,i(P)...q;,i(P) = Trqi, (p1 + ... + D)@, (P1 + . + D) (113)

Thus, we get that i(Trg;,...Pg;, P) is a product of s elements:
Trqi, (pr+ -+ Pm) -G, (P1+ -+ P @iy, = (8)Trqs, (1 + -+ Pm ) o P13y~ €3y P1 G (P1 A+ -+ P ) Gis P1 Gy - (114)

¢ P19, (1 + . +Pm) i, = c(r)Trg;, (p1 + ... + D) iop1 - Trqi, p1¢i, (P1 + o+ D) oo - Trqs, 0163, (P1 + o + P ) Gy

where ¢(r) = 7’[17_117’172...7"171. Analogous statement for i'(Trg;, ...Pg;, P) is true. One can describe formula (114)
in terms of path algebras.

5.4 Relation between M, A,(r;) and /\/ln.;(k(n)

Also, note the following relation between varieties M, A, (r;) and M Ay (r;). Consider partition of set (1,...,n)
into two complement subsets (1,...,k) U (k 4+ 1,...,n). Consider morphisms of algebras:

1 ﬂk(m) — »An(Tz‘),iz : -Zn—k(ri) - An(ri)v (115)

defined by natural way. For unification, denote by A the unital algebra generated by elements P, QQ with relations:
P?=P,Q* = Q. Clearly, A = Pr(I'; ;). We have the following morphisms: j; : A — Ag(r;), 52 : A — Ap_g(rs)
defined by correspondences: ji : (P,Q) — (P,q1 + ... + qx), jo : (P, Q) — (P, 1 — Z?:kH q;)- It is easy that we
have the following commutative diagram:

A (r:) s AnT(Ti) (116)
A" Ay i)
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It can be shown in usual way that _ _
Therefore, we obtain the following isomorphism of the varieties:

—

Rep,, A (r:)[1,m] = Rep, Ay (ri) [T, m] Xgep i) REPuAn—r(ri) [T, m], (118)

where Rep,, Ak, m] is a variety of projectors P, Q of rank k, m respectively. Consider GL,, (F') - invariant divisor

D, of Rep,, A[k, m] defined by relation TrPQ = Zle r; = r. It is clear that
Rep, A, (r;)[1,m] = Rep,, A, (r;)[I,m] xp, Rep,, An_j(r;)[T,m] (119)

Of course, these results are true for another partition with obvious substitutions.
Further, let us consider quotients of these varieties by GL,,(F'). We have morphism:

T : My A (rs)[T,m] = My Ag(ri)[T,m] xp, My Ap_i(r:)[1, m], (120)

where D, is a quotient D,./GL,(F).

Recall general fact about ring of GL,,(F) - invariant functions. Consider algebra A. Then O(M,,(A))GLn(F)
is generated by functions Tra, a € A. Using isomorphism (108), we get that generators of O(M,, (A (r;)))GLln (F)
are necklaces in quiver @, i.e. equivalence classes of cycles in quiver Q. We will say that necklace is a generating
if this necklace has no self-intersections. It can be shown in usual way that we can choose generating necklaces
as generators of O(M;.Qri [1]). We can describe this fact in the following terms:

Corollary 45. Ring OM, An(r)[(I,m)] is generated by elements TrPg;, Pgi,..Pq.,s < n. Also,
O(M, A, (r:)[(1,m)] is generated by elements TrPq;, Pq;,...Pq;, ,s < k.

Denote by t(;, .. 4,) the function Tr(Pg;, Pg;,...Pg;,,). Using isomorphism (108), we can consider ;,
as necklace in quiver Qy, i.e. cycle up to cyclic permutation of vertices. Using irreducibility of variety
My A (r:)[(1,m)], we get the following

yeentm

Proposition 46. Assume k > 3. Then field of rational functions F(M,A,(r)[(T,m)]) has the following
generators: i, i,yst(iy inis)s 11,92,13 = 1,y k, 41 # Q2,01 # 13,42 # 3.

Proof. As we know, variety M, Ay(r;)[(1,m)] is a subvariety of M,Qi[1]. It can be shown in usual
way that generators of F(M,Qg[I]) are necklaces of length less or equal 3. Actually, show that neck-
lace Trf12/323834/341 can be expressed in terms of necklace of length at more 3. Consider following ele-
ment: TrB12623834041 - Trpi13fz1 € S*TrQrpy. Using equivalence relation, we get the following formula:
TrfB31 812023 - TrB34841 813 = TrB12823834 841 - TrB13031, and hence,

TrB31 812823 - TrB34841513
TrB13831

The rest is easy. 0

TrB12823834841 =

(121)

Let Par(k,n) be the set of partition of set (1,...,n) into two complement subset consisting of k£ and n — k

elements. For any partition § = (i1, ..., i) U (¢g+1, -, in ), denote by /Ti(n) and Zfl

_(r;) the algebras generated
by P;qi,,....q;, and P;q;,. ..., q, respectively. As we know, Ay (r;) = /Tz(rl) * 1 jﬁ_k(ri), where morphisms
are defined obviously. Therefore, we have the following morphism:

1 s My A (i) [L,m] = My AQ (i) [T, m] xp, My A5 (i) [T, m] (122)

It is easy that m defined by formula (120) is 7% for 6§ = (1,....,k) U (k+ 1,...,n).
Define morphism IT as follows:

= J] " :MuAu@)Tml— [ MaALE)E m] xp, Mp A (r)[T,m].  (123)

fePar(k,n) 0cPar(k,n)
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Proposition 47. Morphism 11 is a birational isomorphism of /\/lnAn(m)[T, m] on its image, i.e. morphism II
from (123) is a birational immersion.

Proof. Consider open subvariety U of MnAn(ri)[f, m| defined by relations t;, ;,y # 0 for all possible iy,is.
Since variety ./\/lnAn(ri)[f, m] is irreducible, then U is dense in it. Using proposition 46, the ring O(U) is
generated by t?ill 12)7 Ui i yia) - Denote by Uy the image of U under 7%. Morphism 7% : O(Uy) — O(U) is an
injective. Moreover, @, O(Us) = O(]], Uy) contains all t(il),til t

(ir,i2)’ and hence, natural morphism:
O(I1,Ug) = O(U) is surjective. It means that morphism

i1,92,13) 1

n:U— [ (124)
0
is an immersion. Therefore, we get the required statement. O

Remark. Note that we don’t require that variety M, A% (r;)[T,m] xp, M, A% _, (r;)[T,m] is irreducible. Of
course, these results have obvious generalizations on the case of variety ./\/lnPr(Fk)l)[T, m.

Also, note the following useful result. Without loss of generality, consider a partition {1,..,n} =
{1,....,m}U{m+1,..,n}. In this case, we have the isomorphisms: By, = By(I'sm) * Zo(rs) B (Tk.n—m) and

An(ri) =2 Ay (i) * 1 An—m(73). We can define morphisms: .Zm(ri) — Be(Tkm), An—m(ri) = Br(Tk n—m) and

A = Ay (r;) by formulas: (P51, ..., qm) = (P1+ -+ D101, s @)y (P3Gt -oor @) H (P14 oo+ Dk Gt - @)
and (P; Q) — (P;q1 + ... + gx). One can check that we have the following commutative diagram:

A (17) By (Tm) (125)
/ /
\ \

.An,m(’l"i) Br(Fk,n—m)

A

./Zk (’I”z)

Therefore, we have a well-defined morphism:
A (3) % 5 An—m (1) = Be(Thm) # 4, (1) Be(Ckn—m)- (126)
Also, we have the following commutative diagram:

Ay (ri) By.n (127)

)

-] ET

By (Fk,m) *_Zk (r:) B, (Fk,n—m)

A (Tz) *A -’Z(n—m(ri)

Further, let us apply functor Rep to this commutative diagram. Therefore, we obtain the following commutative
diagram:

Rep, By n Repn.,zn (Tl)[f, k]

lz |=

Rep,, B (Fm)[1] Xgep, Z, () (T,m] BEPn Br (D n—m)[1] Rep,, A (1)1, K] X pep i k) REPrAn—m(ri) [T, K]
(128)

Also, we can take quotient by GL, (F') - action. Therefore, we get the following proposition:
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Proposition 48. We have the following commutative diagram:

Man,n[l] MnAn(rl)[]-v

| ~ |

MnBr(Fk,m) XM,sz(ri)[im] MnBr(Fk,nfm)

Remark. This proposition will play important role in the proof of main result of this

6 Moduli varieties M, By, and M, B, ,.

In this section we will study properties of morphisms M,, By, ,, = M, By (T )[1] X o, A (s
and Man,n — Man,m X./\/lnjk(ri)[f,m] Man,nfmu

6.1 Description of moduli variety M, By ,.

k]

paper.

Mn-A'rn(Ti)[i k] XMW,X[m,k] Mn-/zlvn—’m(ri)[i k]
(129)

)[im]MnBr(Fk,nfm)

In this subsection we will consider representations of By(I") for some graph I'. Fix r = (r;; € F*), (ij) € E(I).
Consider variety M, By(Tk.,)[1] for k +m > n. As we know from BZ, M, By (T'k,,) is a subvariety of
(F*)(=1(n=1) " Let us describe this subvariety in terms of the Laplacian of the graph Ty ,,. Consider matrix

of Laplacian A of graph I'y, ,,:

1 0 0 S11 S12 S1m
1 0 S921 5922922 SoamILoam
A= 0 0 1 Skl Sk2xk2 ... SEmTkm
| s san Sk1 1 0 0
s1p S22 s 1 0
12 T22 T T2
S2m Skm
Sim 22 S ) 0 . 1

Denote by Ej and E,, the identity matrices of size k and m respectively.

Lemma 49. Consider matriz of the following type:
E, A
a=(% 5)
Then rankA < n iff rank(BA — Ej) < n —m.

Ewm —A\ (En A\ _ (E, 0
0 E B E.)  \B -BA+E,

Corollary 50. Variety M, By(Tx.n)[1] C (F*)F=D0m=1) s defined by condition:

Proof.

S11 S12 S1m S11 S21 ... Skl 1 0 ... 0
s S22 Sk2 0 1 0
rank( S21 $§99T22 e So2mMTo2m . 12 Zao Tro .
S2n Skn
Skl SE2TE2 - SkmThkm Sin 2 . o 0o o0 .. 1
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Further, apply this lemma to the case of M, By, ,,. It can be shown in usual way that rankA > n. Also, A
has rank n iff

S11 S12 Sin S11 821 -+ Skl 1 0 ... 0
S22 Sk2

821 S22%22 ... S2pd2n S12 % e | (0 1 .. 0 (134)
Soy St

Sk1  SEk2Tk2  ---  SknTkn S1in ;;7; I"TZ o o0 .. 1

As we know from subsection 3.3, we have the following relations:

n n

doshi=> rg=1i=1,.k (135)
j=1

Jj=1

Thus, we get k(k — 1) equations defining variety M, By ,, C (F*)(=Dn=1),

Remark. Consider case r;; = % and k = n. It is easy that these equations coincide with equations defining
generalized Hadamard matrix.

Let us formulate the following useful proposition:

Proposition 51. For any irreducible component C' of M, By, ,,, we have the following inequality:
dimpC > (k—1)(n—1)—k(k—1)=(n—k—-1)(k—1). (136)
Proof. Straightforward. O

6.2 The fibred product.

In this subject we will study properties of morphisms: f, : M, B n, — My, Br(Tim)[1] XMn,Zk(m)[T,m]M”Br(Fkﬂ—m) [1]
and f,, : M, By = MpBy o, X Mo A () [Tom] My Bp .

Remark. Note that if k¥ < 7, then we can choose m such that k +m < n,k+mn—m < n. Using proposition
44, morphism fj »(m) has the following view:

f7/1 . Man,n N (F*)(kfl)(mfl) XMn,Zk(m)[im] (F*)(kfl)(nfmfl) (137)

Recall that M, By, is a subvariety defined by equations (134). Consider composition of morphisms:
Ag(r;) = Br(Tkm) = FT'k m. Using proposition 44, we get the following commutative diagram:

M Be(Th ) [1] —— (F*)(*=1(m=1) (138)

.

Mg Ak (r) [T, m)
If n < k+ m, then we get the following commutative diagram:
My Be(Tpn)[1] — (F*)(k=1)(m—1) (139)
My Ay (r) [T, m]

where s; is an immersion. Also, one can consider similar commutative diagram for algebra By.(I'y, n—sm ). Denote
by sz the natural morphism: M, By(Tx.n_m)[1] = (F*)*=D(=m=1) One can show that we have the following
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commutative diagram:
M, By (T ) [1] ——— (F*) (k=D (m=1) (140)

o

M A (r)[T,m]

AT

MnBr(Fk,nfm) []_] i> (F*)(k:—l)(n—m—l)

Therefore, we have well-defined fibred product: (F*)*=10m=1) X Moy A (ri)[Tm] (F*)(k=D(n=m=1) and immersion
S =51 X 82: MyBy (T m)[1] x Mo A (1) M B (T [1] — (F*) (=D (m=1) X A, Ao (o] (F*)(k=D)(n=m—1),

Denote the coordinates of (F"k)(”ﬂfl)("*l)7 (F*)(kfl)(mfl) and (F*)(k’l)("’mfl) by 2.2, ooy Thony 22,25 -5 Zleom
and Y2 2, ..., Yk,n—m respectively. Morphism pry, is defined by formula:

T2,m+2 Lhym+2
L22 ... Tk2 L22 .o Tg2 T2,m+1 T Thk,mo1
Prom: | o o (e e ], ) (141)
xT2,n Tk,n
T2n - Tkn T2,m - Tkm T2mi1 Tromit

We have the following commutative diagram:

F* (k—1)(n—1)

/\

Man,n F* (k—1)(m—1) % (F*)(k 1)(n—m—1)

/

ka ./\/l Ak(r)M B Fkn m

(142)
Morphism S’ is a composition of S and natural immersion. Thus, morphism f/, is a map of elimination of k — 1
variables.
Describe fibred product M, By (T m)[1] X Ao (r)[Tom] My, By (T n—m)[1] as subvariety of the algebraic torus
(F*)(B=D(m=1) s (p)(k=Dn=m=1)  For simplicity, if i = 1 or j = 1, then xi; =1,2; = 1,y; ; = 1. Express
these elements in terms of z; ;. We will use the following notation:

n
hiy iy = E SivjSini%in g/ Zin s Wiy iy = D, SirjSinYir j—m/Yizj—m- (143)
Jj=1 j=m+1

Using formula (114) and definitions of homomorphisms i and i’, one can obtain that

i(Trqil...PqiLP) = C(I‘) . hil,iz hiz,ia'"hiz,ilyi/(Trqh"'PQiLP) = C/(I‘)( ) h, h/ h/ (144)

11,42 Vi2,13 " it

As we know from proposition 43, M.,,.Aj (ri)[f, m] is a subvariety of MyQry [f] We can associate equation
with any necklace (71, ...,%s) of Qpp as follows:

C(P)hi17i2...his7i1 = C/( )( ) h/ .h/» . (145)

01,02 " 15,21

Using corollary 45, we can choose only generating necklaces.
Similar results for morphism f, are true.
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6.3 Subvarieties Iy and FE,.
Define two subvarieties F1(f},) and Es(f}) of the fibred product as follows:

El(f;b) = {33 € MnBr(Fk,m) XMn.Zk(n)[T,m] M’LBr(FkﬂL—m)|dime7/L71(93) > 1} (146)

Ba(}) = {2 € MaBe(Cim) X g, 10 oot Mo Be )| 2~ () = 0) (147)
Consider point = = (21,22) € MuBr(Tkm) X q, Z, (ri)Tm) MnBr(Lkn—m) such that i*(z1) = i"(z2) =

2’ € M, Ap(r;)[I,m]. Using proposition 36, we get that fiber f. ™' (z) is an algebraic torus of dimension less
or equal k — 1. Also, condition f/ ™' (z) C A“tﬂk(ri)(xﬂ)/F*v where 2" is a Ag(r;) - submodule of a’ generated

by Img; and ImPg; (proposition 36). Using proposition 37, we get that if dime,’L_l(a:) > [ — 1 then graph
Gr(z") = Gi(2') has at least [ connected components. Thus, we have the following filtration of Ej:

B (1) € e BV () = Bu(f) (148)

where BV (£1) = {z € By|dimpf, " (z) > i}.
For fixed partition 0: {1,...,k} into s + 1 non-intersecting subsets I, ..., Is11 consider C’(6) the subvariety
of (F*)(k=1)(m=1) X oy A (o) T] (F*)(k=D(n=m=1) defined by equations:

m m
Y S1i810.0%10 0/ i = 0, Y 81, iS1y,21,i/ 2100 = 0, (149)
i=1 i=1
n n
E S11.i815,iUl1 i—m/ Yl i—m = 0, E S14.i815,iUlsi—m/ Yy i—m = 0. (150)
1=m-+1 1=m-+1

for any l; € I, and Iy € Iy,, k1 # ko.
Denote by C(6) = S~(C"(0)) € MaBr(Tim) X g, &y (o)) M Be(Crin—m)-

Proposition 52. Efs)(f,’L) C Uy C(8), where § runs over all partitions of {1,...,k} into s + 1 non-intersecting
subsets.

Proof. Using proposition 36, we get that ¢;Pg; = 0 for any ¢,j from different subsets. Thus, we have to
express condition ¢;Pg; in terms of algebra Bp(T'k.,). We get that g, (p1 + ... + pm)qi, = 0. Therefore,

qi, (p1 + --pm)ai,p1 = 0 and Tr(q, (p1 + .- + Dm)@01) = Z;il iy SilsTil, /Til, = 0. Analogously, one can
obtain another equations. O

Further, consider subvariety Ea(f},). It is easy that z = (z1,22) € Eo(f},) iff there is non-empty intersection
of closures of GL,,(F) - orbits of i*(z1) and i"*(z2) and i*(z1) # i"*(z2). In this case, there is a semisimple
representation x’ € i*(x1) N #"*(x2). Therefore, if x € Ea(f],) then x” has non-trivial stabilizer. It is easy that
characters of x and z” are the same.

Proposition 53. Let p be a representation of Ag(r;). Consider GLy(F) - orbit of p - O(p). Assume that there

is a semisimple Ay (r;) - representation p’" € O(p) with non-trivial stabilizer. Then there are two complement
subsets I, J of {1, ..., k} satisfying to condition: Trp(q;, P...qi. P) = 0 if {i1,...,is NI # 0 and {iy, ...,i5s}NJ # 0.

Proof. Using proposition 36, we get that there are at least two subsets I, J such that TUJ ={1,....k},INJ =0
and p"(¢;Pq;) = p"(¢jPq;) = 0 for any ¢ € I,j € J. Thus, Trp”(q;, P...q;, P) = 0 if {i1,...,is} NI # ) and
{i1,..,is} N J # 0. Since characters of p and p” are the same, we get the required statement. O

C

For fixed partition 6: {1,..,k} = I U JINJ = 0, we will consider subvariety D(f)
My By (Tiem,) X Mty Ay (1) M, By (T n—m) defined by equations:

i*(Trqi, P...q;, P) = 0 = i"*(Trq;, P...q;, P), (151)

if {i1,...,is} NI # 0 and {i1,...,i5} N J # 0. Using proposition 53, we get the following:
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Corollary 54. Es(f),) C Uy D(0), where union taken over all possible partitions of {1, ..., k} into two non-empty
complement subsets I,J.

Fix partition §# = I U J. Consider subvarieties D/ (#) C (F*)*=D(m=1 Dl () c (F*)F=Dr=m=1) defined
by equations:
Piyigehig iy = 0 (152)

and
hl R =0 (153)

11,02 Vst

respectively. Denote by D;(0),i = 1,2 the s; ' (D4(6)),i = 1,2 respectively. It is easy that

6.4 Combinatorial description of Fs.

In this subsection we will introduce the notion of maximal §-subquivers for fixed partition 6. Using this notion,
we get the description of components of D;(6) and Dy (6).

Firstly, consider the following description of the varieties. Consider polynomial ring Flh; ;],i # j,i,j =
1,....,k. We have a homomorphism of rings: H; : F[h, ;| — Fl[z; ;] defined by formulas (143). Thus, we have
the morphism of affine varieties: Hj : (F*)*=D0m=1) _ Fk(k=1) = Also, we can define morphism: Hj o sy :
My Be(Tgn) — (F*)E=Dm=1) _ pk(k=1) " We can consider variety Dy (f) C F**=1 defined by equations
(152). Tt is easy that D{(0) = (H;)"Y(DY(0)) and D(0) = (Hj o s1)~1(D}(6)). Analogously, define Hy :
Flhi ;] = Fly:;]. In this case, D5(0) = (H3)~'(D4(0)) and D2(0) = (Hj o s2)~*(D4(9)).

We have the following combinatorial description of the set of the equations defining of DY (). Consider
complete double quiver Qp. For any subquiver @ of Qry), denote by V(Q) and Arr(Q) the sets of vertices and
arrows of the quiver @ respectively. We will consider subquivers of Qp such that V(Q) = V/(Qrp) = {1, ..., k}.
We can associate with any subquiver @ C Qr) variety M(Q) C (F)F(E=1) as follows: M(Q) is a subvariety
of (F)k(*=1) defined by equations h;; = 0 for a;; € Arr(Qry) \ Arr(Q). It is clear that if @' C Q”, then
MQ) € M(@Q").

Fix the partition of vertices of the Qpy: 6 = I U J. Let us define the notion of 6 - subquiver of Q. The
subquiver @ of Qry is said to be a 0-subquiver if V(Q) = {1,...,k} and Q satisfy to condition: there are no
cycles ¢ = (i1, ...,15) € Q such that (iq,...,i5) NI # 0, (i1,...,35) N J #£ 0.

We can define partial order on the set of subquivers of Qr() by natural way. Restrict this partial order to
set of 6 - subquivers. It leads us to notion of maximal 6 - subquiver of Qrp). Denote by Max(6) the set of
f-maximal subquivers of Qr(;-

Proposition 55. e For any 0-subquiver Q C Qy, we have the following immersion:

M(Q) c D (). (155)
o We have the following identity for DY (0):

pie)= |J M@ (156)

QeMax(0)

Proof. First statement is easy. Prove the second statement. With any irreducible component C' of DY (6) we
can associate the subquiver Q(C) C Qryi) as follows: a;; € Q(C) iff ideal of component C' contains h;;. It can
be shown in usual way that Q(C) is a 6 - subquiver and C C M(Q(C)). Thus, DY (0) C |JM(Q), where union
is taken over all f-subquivers. It is easy that we can take only f-maximal subquivers. O

This proposition motivates us to study maximal #-subquivers. For this purpose, introduce the notion of linear
connected component of a quiver Q. We will say that set of vertices I generates linear connected component if

e for any pair vertices i1, 72 there are path from i; to 2 and path from i5 to iy
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e for any vertices j ¢ I,4 € I there is no path from j to ¢ or there is not path from 7 to j.

We can define the equivalence relation on the set of vertices as follows: i ~ j iff there are path from ¢ to j and
path from j to 4. It is easy that linear connected component is an equivalence class. We will denote by {I}
the linear connected component (briefly l.c.c.) generating by vertex set I. Consider two l.c.c. {I;} and {I2}.
We will say that {I;} > {I} if there is an arrow from some vertex i; € I} to some vertex iy € I5. It follows
from definition of linear connectedness that if this order is well-defined. Let us formulate the following trivial
property of l.c.c.:

Proposition 56. e Set of l.c.c. of quiver Q is partially ordered.
o Quiver Q is connected iff set of l.c.c. is linear ordered.
Proof. 1t is easy. O

Consider maximal 8-subquiver Q. It is clear that there are no l.c.c. of () which contains vertices from I and
J. Thus, one can consider decomposition of I and J into union of vertex sets of l.c.c. of Q:

I=UL L, J=U%,J; (157)
We have the following useful property of maximal 6 - subquivers:

Proposition 57. Fiz partition § = I U J. Consider 0-subquiver Q@ C Qrp. We have the decomposition of
vertex set {1,...,k} of Q into union of vertex sets of l.c.c. (157). Q is maximal 0 - subquiver of Qry iff

e () is connected.

o Consider a pair of l.c.c. {K1},{K2}: {K1} > {K2}. Then for any pair of vertices v1 € K1,ve € Ko there
is an arrow from vy to vs.

Proof. Tt is easy that if ) satisfy to conditions, then @ is a maximal #-subquiver. Converse statement is easy
too. O

Remark. Assume that we have the following ordering on the set of l.c.c. of maximal § - subquiver Q: {I;} >
o> AL,y > {1} > ... > {Ig, 41} > ... > {J1, }. Consider another partition: 6’ : I | JK, K = Uilzz IiUUlle J;.
It is easy that Q is 0’ - subquiver of Qj, but not maximal.

Thus, problem of finding | J D(6) has the following parts:

e one have to classify all maximal #-subquivers for any partition 6 of {1, ..., k},
e one have to calculate (Hf o s1)" (M (Q)) C My, Br(Tk.m) for maximal §-subquiver Q.

Consider the case of M, B,, ,. Assume that r; # 0,1. Subvariety E; has description quite similar to case of
M, By, . Consider subvariety Ey C M,, By, m X Moy A () [T,m] My, By, p—m. Also, we have to study all partitions
and corresponding them maximal §-subquivers. Let us note the following property of morphism Hj o s; in case
of M, By, :

Proposition 58. Fiz partition 8. Consider maximal 0 - subquivers @ with condition: there is a l.c.c. of @
consisting of one vertex. Then (Hy o s1) Y (M(Q)) = 0.

Proof. Consider maximal 6 - subquiver () with l.c.c. consisting one vertex i. Then for any vertex j we have the
following identity h; jh;; = TrPq;Pq; = 0. In the case of M,,B,, ,,, we have the identity > . , ¢; = 1. Thus,
ri = TrPqi P(¢;i + 32,4 4;) = TrPq; Pg; = r2. Thus, if r; # 0,1, then (Hf o s1)"H(M(Q)) = 0. O

This proposition means that we can consider only maximal #-subquivers with condition: any l.c.c. has more
than 1 vertex.

38



6.5 Varieties MgB34, MBss and fibred products.
In this subsection we will apply results of subsections 6.2 and 6.3 in the case of MgB3 ¢ and MgBg 6.

Fix r;; = &. Thus, r; = 1. Consider case of MgBsg. Denote by X(3,6), X(3,3) and Y (3) the varieties
MgBsg, MgB(Is3) and MgAs(1/2) respectively. As we know, X (3,3) = (F*)* and Y(3) = M3Qrz[1]. There
are only 5 generating necklaces in the quiver Q3. They correspond to the following elements: A = TrPq; Pqa,
B =TrPqy Pgs, C = TrPgs Pq3, a = TrPgy PgsPgs and 8 = TrPg; Pg3 Pgs. One can check that Y (3) is defined
by equation:

ABC = ap. (158)

In this case, we get the following commutative diagram:

X(3,3) Xy(g) X(3,3) e X(3,3) (159)

L

X(3,3) ———~Y(3)

where o acts on Y (3) by the rule: 0: P+—1— P.
Consider fibred product: X(3,3) xy 3y X(3,3). Let us formulate the following:

Lemma 59. Any irreducible component of X (3,3) Xy (3) X (3, 3) has dimension more or equal 3.
Proof. Straightforward. O

We have natural morphism: fg : X (3,6) — X(3,3) xy (3 X(3,3). We will study properties of this morphism.
Namely, we will calculate varieties E1(f§) and Ea(f§).
We obtain the following result:

Proposition 60. o Subvariety F1(f§) consists of finite set of points,
e dimension of any component of Eq(f) is less or equal 3.
Proof. See Appendix A. O
Denote by Cj,i = 1,...,s and Cj,i = 1,...,s" the components of X(3,3) xy(3) X(3,3) and X(3,6) which
dimension more or equal to 4.
/

Corollary 61. e s=35

e there is a bijection i < j between set Ci,i = 1,..,s and Cj,j = 1,...,s" such that fg(C;) = C} and
restriction of f§ to C; is a birational morphism.

Remark We will prove that there is only one 4-dimensional irreducible component of X (3, 3) xy(3) X(3,3)
in the Section ??. Therefore, we get that X(3,6) is a 4-dimensional and irreducible.

Consider the second case. For simplicity, denote by X(6,6) and Y (6) the varieties MgBge and
Mg As(1/2)[T,3] respectively. Similar to subsection 10, we can define involution o on Y (6). We have the
following commutative diagram:

X (3,6) xy(3) X(3,6) — X(3,6) (160)
T
X(3,6) — - v(6)
Therefore, we have the morphism: f5 : X (6,6) — X(3,6) xy ) X(3,6).
Proposition 62. o Variety E1(fs) consists of finite set of points.
o dimp B (fs) < 3
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Proof. See Appendix B. O

Denote by C = J;_, C;, C' = Uflzl C the union of four-dimensional irreducible components of X (6,6) and
the union of four-dimensional irreducible components of X (3,6) xy (g X(3,6) respectively. Using proposition
62, we obtain the following result:

Proposition 63. e s=4¢,

e there is a bijection: i <> j such that fs(C;) = C} and fs|c,,i = 1,...,s is a birational isomorphism.
Conjecture 64. s = s’ =1, i.e. there is only one four-dimensional irreducible component of X(6,6).

Remark. We will prove that s > 0 in Section 77.

7 The case of graph I's;.

In this section we will consider the case of B,(I'33), i.e. r;; = for i,j = 1,2,3. Let p1,p2,p3,q1, 72,3 be the
generators of B, (I's3). Variety M¢B,(I's 3)[1] parameterizes 6-dimensional B, (I's 3)-modules of rank 1. Let
P and ) be the elements Z?:l p; and Z?Zl g; respectively. Consider unital algebra ./2(3(37”) with generators
w1, ws, w3, W with relations: w% =w;, W? =W, w;Ww; = 3rw;,i=1,2,3. In this subsection, we will consider
the following morphisms of algebras: 97 5 : A> — B,.(I's 3) given by formulas:

V1w =g, W= P (161)

Yo iw = pi, W= Q (162)

It is evident that there is the involution 7 on the algebra B,.(I's 3) defined by rule: p; ¢+ ¢;,¢ = 1,2,3. And
hence, 12 = ¥ o T.
For simplicity, we will use the following notation:

X = MGBT(F&B)D]? Y('?’) = MGAJ(ST)[(L 1,1, 3)] (163)

Also, we can consider variety D parameterizing GLg(F)-orbits of pair of the projectors (P, Q) of rank 3 with
relation TrPQ = Tr(p; + p2 +p3)(q1 + g2 + g3) = 9r. In this subsection, we will study properties of morphisms:
X —=>Y(3)and X - Y (3) xp Y(3).

7.1 Preliminary remarks.

Consider algebra Pr(T ,,) with generators p1, ..., Pk, q1, ---, @m. Algebras Pr(T'y 1), Pr(T',,) and Pr(I'; 1) are

generated by elements P = Zle Pis Qs oo Qs P1y -y Dk, @ = Y ey ¢; and P, Q respectively.
One can show that
PI‘(Fk7m) = Pr(l“k,l) *PF(F1,1) Pr(Fl,m). (164)

Thus, we have the isomorphism of varieties:

Rep,n+kPr(Fk,m)[f] = Rep,n+kPr(Fk,1)[T, m] XRep,, , ,Pr(T1,1)[km] Rep,, . Pr(I'ym)[k, T] (165)
For moduli varieties there is the commutative diagram:
Mk Pr(Tg ) [1] —— Mok Pr(Cy 1) [T, m] (166)

| l

—

Mm-‘rkPr(Fl,m)[k7 1} - Mm+kPr(F1,l)[ka m]
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The dimension counting shows us that this diagram is not a fibred product. Also, using considering of
projections: M,k Pr(Ti.m)[1] — F* MpimPr(Ti1)[1,m] — F*, My xPr(Tym)[k, 1] — F™ and
Mo+ Pr(T'11)[k,m] — F, we get the commutative diagram:

Mietm 1 Be(Tiym) — Mm+kv1k(ri)[i m| (167)

| |

Mm+kvzlvm(ri)[ka T] D

Let us come back to the case k = m = 3,r;; = r # 0. In this situation, we can identify algebras A, (3r) and
A (3r) via involution 7 : p; <> ¢;,7 = 1,2,3. Using notation, we obtain the following commutative diagram:

pr
X —

(168)

proT

D<=

Y ——

As we know from proposition 44, My 4, Br(Ty.m)[1] = (F*)k=DMm=1 Thus, X = (F*)*. Coordinates of X
may be chosen as follows:

1 1 1 1
v1 = 5 Tpiaipage, 22 = S Trp1aipsqz, y1 = S Trp1aip2s, y2 = 5 Trp1a1psgs. (169)
Clearly, X = SpecF[a:lil,ijﬂ,y1 1,y2i1]. It can be shown in usual way that 7 : z; — i,yg — y—z,xQ —

y—ll,yl — ?12 As we know, commutative ring O(Y') is generated by a(;, ;,) = T,%Tr(Pqiquh) and a;, iy.iy) =

T%Tr(Pqiquiz Pq;,) for iy, iz,i3 = 1,2,3. We take the coefficients %2 and T% for simplicity of calculations. Also,
recall from subsection 6.5:

Y = SpecFla1,2), a(1,3), 4(2,3), 4(1,2,3), 4(1,3,2)] /{@(1,2)0(1,3)0(2,3) = (1,2,3)0(1,3,2))
Describe the variety D in terms of traces. Recall that D is the variety of projectors P and @ of rank 3 and
satisfying to condition: TrPQ = 9r. One can show that D = F? = SpecF[-5TrPQPQ, L TrPQPQPQ)].
7.2 Identities for projectors pi, p2, ps; q1, G2, q3-

In this subsection we prove some identity for projectors p1, p2, p3, q1, g2, g3 of rank 1 with conditions: Trp;q; = r.
We have the following formulas:

1 1
S Tpiip1r = 5 TepLaupig;pr (170)

and ) .
2 iP5 Trpiqipigipr = 1. (171)

Note the following useful property of projectors pi,p2,ps; gi,q; of rank 1 with condition Trp;q; = r for all
1,].
Lemma 65. Consider projectors: pi,p2,ps;qi,q2 of rank 1 with condition Trp;q; = r. Then we have the
following identity:

1 1
ﬁTr(Pl +p2+p3)q1(p1 +p2 +p3)ge = ng(Pl(Q1 +q2)p2(q1 + q2)p3(qr + q2)) +1 = (172)

1
ﬁ“(ﬁ(% +@2)p3(q1 + q2)p2(q1 + q2)) + 1
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Proof. Using relations: p; = T%piqlplqlpi, we get:

1 1
P,Trpl((h + q2)p2(q1 + @2)p3(q1 + q2) = ﬁTr(pl((h + q2)p2q1p1 - P1@ip2(q1 + q2)p3qip1 - P1@ips(q1 + q2)p1) =

1 1 1 1 x
2 hpia + e)peaipr - S Tiprap2(ar + @2)psapr - 5 Tiviaips(ar + a2)pr = (1 + x—l)(l + 37;)(1 + x2).
Moreover,
L D0+ Y1) = (Lt m t o)1+ 1)1
— — To) = T+ — 4+ —)—1.
X1 X2 2 ! 2 I T2
We can transform the right expression into:
1
rszf(pl +p2 +p3)q1(p1 +p2 +p3)ge — 1 (173)

This proves our statement.
O

Analogously, we get the similar formula for pi,p2, ps, ¢;,¢; for any 4,5 and for ¢i,q2,q3;pi,pj,¢ # j, 4,5 =
1,2,3.
Further, let us formulate the following proposition:

Proposition 66. Consider projectors pi,p2,D3;q1, 42, q3 of rank 1 with condition Trp;q; = r. Denote by P and
Q the sums p1 + p2 + p3 and q1 + g2 + g3 respectively. Then we hold the following identity:

1 1
I GTPareg) -1=[[ (GT@nQp) -1, (174)
(i,5)€{1,2,3} (i,5)€{1,2,3}
where product is taken over all non-ordered pairs (i,7) € {1,2,3}.

Proof. Using relation (172), we obtain the following formula:

1 1 1
(T*QTYP%PQZ - 1)(772T1"P(12PQS - 1)(7?2TTP(13P(]1 -1)=

1 1 1
ﬁTrpl (q1+q2)p2(q1 +q2)p3(q1 +q2)- ngTrpl (g2+q3)p2(g2+a3)p3(g2+g3)- T*3Trp1 (q1+3)p2(q1 +q3)p3(q1+q3) =

1 T T Y1 T2 Y2 Y2 1 _
(1+ ;1)(1 + ;2)(1 + ) - (14 a)(l + ;15)(1 + ;2) (I 4y)(1+ ;)(1 + E) =

(1+ %)(1 + %)(1 +y1) - (1+ %)(1 + %%)(1 + %) (14 @)1+ %)(1 + i) -

1 1 1
ﬁTYQ1 (p1+Pp2)q2(p1+p2)q3(p1+p2)- 73TYQ1 (p2+p3)g2(p2+ps3)qs(p2+ps)- 73Trq1 (P1+p3)q2(p1+p3)az(p1+p3) =

Using proposition 65, we get the required identity:

1 1 1
(ﬁTrP(hPQQ - 1)(772TTPQ2PQ3 - 1)(72TTPQ3P¢11 -1)=

(5T Qp2 — 1) TrQpoQps — 1) TrQpsQps — 1)
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7.3 Properties of the map X — Y xp Y.

Denote by ui, us, us the following elements:

1
up = aq,2) +aa,3) +a@z) = ﬁ(TrP(hPfh + TrPq1 Pg3 + TrPqa Pgs), (175)

1
Uy = a1,2,3) T G(1,3,2) = E(TTPQ1PQ2P<J3 + TrPq1 Pq3 Pgs), (176)

1 1 1
uz = (a2 — 1)(aq3 — lapes —1) = (T*QTTPQHP(D - 1)(72T1"PQQP(13 - 1)(72TYPC]3PQ1 —-1). (177)

One can consider elements u; as elements of Flz1!, 23", yi',yF"]. Tt can be shown in usual way that 7(u;) =
ui, i =1,2,3.

Element u; is a TrPQPQ up to constant. Expression us is a linear combination of TrPQPQPQ, TrPQPQ
and constant. Also, element ug is described in proposition 66.

Consider 3-dimensional affine space U = SpecF'[u, us, us]. There exists a natural surjective map: U — D.
There are natural surjective maps: © : Y — U.

We obtain that variety Y X3 Y is a divisor of the Y xp Y, dimpY Xy Y = 5,dimpY Xp Y = 6. Thus, we

get the following commutative diagram:
X
Y Y

\V4

Consider natural map: pris = (pr,pro7): X — Y xp Y. Using commutative diagram (178), we obtain the
following proposition:

(178)

Proposition 67. pri3(X) CY xy Y CY xp Y.

Consider action of symmetric group S3 acting by permutations of the projectors p; on the variety X. We
have injection: j : F[X]% — F[X] and injection twisted by involution 7: 7o j : F[X]% — F[X]. Thus, we
can consider the intersection F[X]% and 7(F[X]%) in the ring F[X]. It is easy 7(F[X]%) = F[X]Tsfif1 =
F[X]757. Moreover, group 7537 acts on the X by permutations of the projectors ¢;. Therefore, one can check
that intersection F[X]% N 7(F[X]%) = F[X]%*% where S3 x S3 acts on the X by permutations of p; and
gj. Rings F[X]% and 7(F[X]®*) are isomorphic. Identify these rings via isomorphism 7. Also, note that
7(S3 x S3)7 = S3 x S5 in the group Aut(I's3). Thus, we have the well-defined involution 7 on the F[X]%*5:
such that we have the following commutative diagram:

F[X]%:%%: X F[X] (179)

1

F[X]5%5: —— P[X]

where i is standard injection. For i we have the decomposition j o4y, where i; : F[X]%*% — F[X]% and
j: F[X]% — F[X], here Ss is the group acting by permutations of p;. Using relation 7 0o 7 = i, we obtain
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the decomposition ¢ = (7 0 j) o (i; o 7). Thus, we get the following commutative diagram:

FIX]% —L = F[X] (180)

ﬁT mﬁ

F[X]S;;XS3 hor F[X]Ss

Further, consider immersion: iy : F[Y] — F[X]3. It is easy that this immersion is compatible with action
another symmetric group Ss. Thus, we have the following commutative diagram:

FlY] —2 > Fx]5 (181)

F[y]Ss *6; F[X]53X5'3

Here 6 is the immersion induced by s, 9 is standard immersion.
Moreover, we can consider the situation of the immersion i; o 7 : F[X]%*% — F[X]%. In this situation,
we have the following commutative diagram:

FlX]Ssx8s T prx)Ss (182)
TO@T . izT
Fly]% F[Y]

Actually, using relation i1 0 8 = i3 01, we get the relation: (i3 07) o (7 06) =iy 0. Also, direct checking show
us that the following diagram:

F[X]%%5s < ply]Ss (183)
TOQT T
F[Y]5s FlU

Here injection: F[U] — F[Y]% is given by elements u1, ug, us.
Therefore, we obtain the following commutative diagram:

FIX] ~—1— FIX]% <2 F[v] (184)

10T

FIX]% <2 FIX]%%Ss < F[y]$
TM

FlY

Further, let us apply to this diagram the functor Spec. Also, let us denote by X, ) the varieties X/S3 =
SpecF[X]% and Y/S5 = SpecF[Y]%* respectively. Thus, we get the following proposition:
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Proposition 68. There is the following commutative diagram:

¢

X —"= X/S; Y (185)
Tom, l P J/
X/8; X Y
¢l worl WJ/
y ——=y—" >y

where 7, ™ are standard factorization maps, ¢ is a well-defined map: X/Ss — Y. Also, we have the following
identity: pr = ¢pom.
7.4 General fibers of the morphism pr.

In this subsection we will prove that the morphism pr has degree 12.
Let us express the morphism pr in coordinates:

1 1
a2 =1+ —+ —)(1 +z1 + 22), (186)

X1 X9

1 1
az) =1+ —+—)1+y1 +y2) (187)

Y1 Y2

and Yi o, Y2 L )

apgz =1+—+=")1+—+—). 188
o=+ 24 Bya g 2y 22 (188)

Analogous to this formula, we obtain the following expressions:

Yyi o Y2 1 1
a =14+z14+2)l+—+—=)1+—+ — 189
123 = ( 1+ z2)( . xQ)( " y2) (189)
and 1 1
X1 T
a =14+—+—)14+—+—=)1+y1 +y2)- 190
(1,3,2) ( 1 :172)( " yz)( Y1+ Y2) (190)

Fix a general point P = (A = a1 9), B = a(1,3),C = a(2,3), @ = a(1,2,3), 3 = a(1,3,2)). Then for calculation of
fiber pr;*(P) we have to compute a number of solutions of the system of equations (186), (187), (188), (189)
and (190) for the point P.

Assume that A, B,C # 0. Hence, «, 8 # 0. Thus, we can simplify formulas (189) and (190) as follows:

1 1 « Tr1 X9
1+ +2)l+—4+—)==1+—+—), 191
(o tm)(i+ o+ )= G+ T+ %) (191)
11 B Y1 | Y2
14—+ —)(1 =—(1+=+4+=). 192
1+ =+ ) +u+u) = 51+ 2+ 2 (192)

For the calculation of fiber pr=1(P) , let us compactify of (F*)*. We will choose the following compactifi-
cation: (F*)* is an open subvariety of P? x P2 as follows. We will denote by ((to : t1 : t2), (20 : 21 : 22)) the
coordinates of P7 x P2. We have the following formulas:

t t
‘lefl, .%‘223, y1:Z£7 ygzﬁ. (193)

for coordinates of (F*)* and P? x P2
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We get the following system of equations:

(to +t1+ tg)(totl + t1to + tgto) = Atgtqto, (194)
(20 + 21 + 22) (2021 + 2122 + 2220) = Bzgz1 22, (195)
(t0t122 + titozg + tgtozl)(ZOthQ + z129t0 + ZQZ()tl) = CtotthZOleg, (196)
(6%
(to +t + t2)(ZO + 21+ ZQ) = 6(t02’0 +t121 + t222)7 (197)
(2021 + 2122 + 2220) (tot1 + tita 4 taly) = g(zozﬁoh + z129t1ta + 2220t2lo). (198)

Under our assumption we can omit the equation (196). We have to compute a intersection number of divisors
(194),(195),(197) and (198). After computing we have to except the points at the divisors tgt1t2 = 0 and
(07

202122 = 0. For simplicity, denote by o’ and ' the expressions & and % respectively.

Firstly, let us study equation (194). Consider the rational map:
p: P? --> P,

defined by correspondence: p : (top : t1 : t2) — ((to + t1 + t2)(tot1 + t1ta + tato) : totitz). Consider the
surface & C P? x P! which is a closure of graph of the morphism p. This surface is called Beauville elliptic
family (cf. [?]). We have the natural projection: & — P!. This projection has 6 sections defined by points
Fi(1:0:0),F(0:1:0),F350:0:1),G1(0: —=1:1),G2(1 :0: —1),G5(1 : =1 :0). It is well-known that
fiber £4, A € P! is an elliptic curve, iff A # (0:1),(1:1),(9:1),(1:0). Analogously, second equation defines
elliptic curve £p. Intersection of €4 N {tpt1ta = 0} is a divisor 2 Zle F; + Zle G;. Denote by ~, the linear
equivalence of divisors. Let us formulate some property of points F;, G;,i = 1,2, 3.

Lemma 69. Assume A# (0:1),(1:1),(9:1),(1:0). Consider elliptic curve E4. Then we have the following
relations for points Fy;G;,1=1,2,3:

G1+Go+G3 ~p, 3G;,1=1,2,3.

FZ‘—FF]' ~J, G1+Gj,i,j =1,2,3,
2F; ~1, 2G;,i=1,2,3,

Proof. Consider the intersection of line given by equation (A—1)tg—t1 —t2 = 0 and 4. It can be shown in usual
way that intersection is triple point G'1. Analogously, G;,% = 1,2,3 are flex points. Therefore, 3G; ~r 3Gj.
Points G1, G and G3 lie on the line tg + t1 +t3 = 0. Hence, Gy + G2 + G3 ~, 3G;. Further, points Fy, F5 and
(3 lie on the line to = 0. Thus, F} + F» + G3 ~, 3G;. ]

It is well known that for fixed point P € £4 elements X — P, X € £4 form the group Pic’(£4). Consider
elliptic curve £4 C P2. As we know, there is an usual group law on the £4. Recall that usual group law on the
plane elliptic curve is defined by flex point. It is easy that flex points of £4 are G;,7 = 1,2,3. Without loss
of generality, let us choose the point G;. Map €4 — Pic’(€4) defined by correspondence: X + X — G is an
isomorphism of the groups. From relations, we get that elements 0, Gy — G1,Gs — Gy, F} — G1, Fo — Gy, F5— G,
form the group Zg. It is easy that Fy — G is element of second order, G5 — G1,G3 — G are elements of third
order, Iy — G1, F5 — G1 are elements of sixth order. It is well known that Beauville family

(to + 11 + tz)(totl + toto + tltg) = Atgtits

is the family of the elliptic curves with fixed structure of sixth order (cf. [?]).

Further, let us express the natural action of group S35 on the elliptic curve of £4 in terms of automorphisms of
the curve. It can be shown in usual way that permutation of zy and x; is the automorphism: P — 2F; — P, P €
€4, cyclic permutation (0,1,2) : g — 1 — Ty > xg is the automorphism: P — P+ Gy — Gy, P € £4. Also,
map G : x; — x%_,i =0,1,2 is the automorphism: ¢ : P+— P+ F} — (3.
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If A,B # 0,1,9,00 first and second equation define the product of elliptic curves £4 x €. Equations
(197), (198) define divisors D1 o/, D2 g C €4 X Ep respectively. Recall that product of elliptic curves €4 x Ep
has divisors: €4 x pt and pt x € which are not numerically equivalent. These divisors are called wvertical
and horizontal respectively. We will say that divisor D of £4 x Ep has type (a,b) if D - (pt x Eg) = a and
D - (€4 x pt) = b. We obtain that D is divisor of type (3,3), D g is divisor of type (6,6).

Lemma 70. For any o', 3" € P divisor Dy o is linear equivalent to 3Gy x Eg + Ea x 3Gy, Divisor Da g of
Ea X Ep is reducible and we have the following identity:

3 3
Doy =Dy +> FixEp+y EaxFi (199)

i=1 i=1
Thus, for any o/, 3" € P! divisors Dy o and D) g are not linear equivalent, in particular, are not equal.

Proof. First statement is trivial. Consider the divisor Dy g of €4 x Ep defined by (198). It is easy that
Ea X Fii=1,2,3 and F; x Ep are components of Dy g. Thus, Dy g = Dy 5 + Z?:l F, x &g+ Z?:l Ea X Fj.
Clearly, divisors D o and Dj g are linear equivalent to 3G1 x g + €4 x 3G and 6G1 x £ + €4 x 6Gy
respectively. Using lemma 69, we get the following linear equivalences of divisors:

D/Q’ﬁ/ ~r, (F1+F2+F3)><EB+5AX(F1+F2+F3)003G1><53+5A><3G1
O

Consider morphism ¢*2 =¢ x ¢ : 4 x Ep — £4 x Ep. It is easy to see that ¢ x ¢ transforms linear system
of divisors {D1 o' }arepr into linear system {Ds g}z epr.

Lemma 71. For general A, B, «, B divisors Dy o and Dy g are irreducible.

Proof. Using transformation ¢*2, it is enough to prove that D; ./ is an irreducible for general o’. Consider
linear system of divisors {D1 o }qepi. By theorem of Bertini, general divisor of this linear system is smooth
outside of base locus. Let us compute the base locus of the system. It is given by system of the equations:
(to +t1 + t2)(20 + 21 + 22) = 0 and tp2zp + t121 + taze = 0 in the variety £4 x €. There are 6 points:
(1:=1:0)x(0:0:1),(1:0:-1)x(0:1:0),(0:1:-1)x(1:0:0),(0:0:1)x(1:=1:0),(0:1:0)x(1:0:
—1),(1:0:0)x(0:1:—=1),6 points: (1:=1:0)x (1:1:w),(1:0:=1)x(1:w;1),(0:1:-1)x (w:1:1),
where w satisfy to relation (2w + 1)(w 4+ 2) = Bw and 6 points (1 : 1 :v) x (1 : =1:0),(1:v:1) x(1:
0:—-1),(v:1:1)x(0:1: —1), where v satisfy to relation: (2u + 1)(u + 2) = Au. Consider the point
(1:0:0)x(0:1:—1). Let us prove that general divisor D1 o is smooth in this point. For this purpose, let
us consider the affine coordinate chart V = F* where 1 = %, T9 = %(2), Yo = %, Y2 = % Consider the

Z1,22,Y0,Y2
intersection £4 x Eg N'V. Then divisor D o in this affine chart is given by the system of the equations:

(1421 + 22)(21 + 22 + 2122) = Azq29,
(o + 1+ y2)(yo + Y2 + Yoy2) = Byoye,
(L+ a1+ 22)(yo + 1 +y2) = &/ (yo + 21 + 22y2).
One can calculate the matrix of the jacobian of this system in the point (0,0) x (0, —1):

1 1 0 0
0 0 B-1 -1 (200)

- o 1-a 1
It is easy that for general B, a’ rank of this matrix is 3. Analogously, one can consider another points. Hence,
the general divisor Dy o is smooth, and hence, irreducible. Also, divisor Dj g is irreducible as transform of
Dl,ow O

Corollary 72. Morphism pr is dominant. For general point P fiber pr=1(P) consists of finite set of points,
moreover |pr—t(P)| < 12.

Proof. Actually, we have that D; o - Dy g- = 18 and we have 6 common points in the ”infinite” part. O
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7.5 Varieties Y and its quotient ).
In this subsection we will study morphism © : Y — U and morphism n: Y — U.
Proposition 73. Morphism © : Y — U is a fibration of curves of genus 4.

Proof. Fix a general point u = (ug, ug, ug). Fiber Y;, is defined by system of equations:
a(1,2) T 0(1,3) T a2,3) = U1,

a(1,2,3) T a(1,3,2) = U2,
(a1,2) = Dlaq,s) = Dlas) — 1) = us,
@(1,2,3)4(1,3,2) = @(1,2)4(1,3)4(2,3)-

Let us compactify these equations in the following way: affine space will be considered as open dense
subvariety of P5. Thus, first two equations define 3-dimensional linear subspace £ of P°. Third and second
equations define a 2-dimensional subspace V of H°(P®, O(3)), i.e. pencil of cubics. These pencil has a singular
element which is a union of linear space and quadric Q. Actually, we can express this quadric in terms of local
coordinates:

Q:aq,2,80(1,32) ~ 012)001,3) ~ 41,2)4(2,3) ~ 41,8023 + 1 — 1= uz. (201)
Consider projective space P° with homogenous coordinates (20 : 21 : 22 : 23 : 24 : z5). For simplicity, let us
change the variables in the following manner: a(23) = %,a(l’g’Q) =
Thus, the we get the following quadric Q:

— 25

Z2 — 23 — 24 25
200 A(1,2) = 25 A(1,3) = 35 A(2,3) =

2129 — 2324 — 2325 — 2425 — (ug — 1 — Ug)Zg =0 (202)

and cubic C:
202122 = 232425 (203)

Let us prove some properties of the intersection of general quadric and cubic:

Lemma 74. For general u € U intersection Q, C and 3-dimensional linear space L is non-singular.
Proof. Space L is given by equations:
z3+ 24+ 25 —u120 = 0,21 + 20 — U229 = 0 (204)

Consider matrix of the jacobian of the equations defining intersection of Q, C and L:

—uy 0 0 1 1 1
— 1 1
J- w2 0 0 ) (205)
—Z1%2 TR0%2  TZ0%1 2425 Z3%5 Z3%4
72(U1 —1- ’LL3)ZO —Z9 —ZzZ1 Za+25 23+ 25 23+ 24

Rows of J correspond to variables z, ..., z5 respectively. It can be shown in usual way that statement of the
lemma is equivalent to condition rankJ = 4 for general u € &Y. We will denote by J;, 4, i,,i, the submatrix of J
with rows with numbers i;,42,43,44 € {1,...,6},71 < i3 < ig < i4. Consider the varieties V;, s, s, defined by
equations detJ;, i, 5.4, = 0,%1,%2,13,%4 € {1,...,6} respectively. It is easy that singularities of the intersection
CNQNL are in the n(il,ig,ig,i4),1§i1<i2<i3<i4§6 Vvi1ﬂ’2,i3,i4.

Further, one can show that detJsss¢ = detdoase = (23 — 24)(24a — 25)(25 — 23),detJazas =
(Z4—Z3)(Z5 —Zo)(Zl —22), detJ2,37476 = (25 —Z3)(Z4 —Zo)(zl —2’2), detJ2,375,6 = (Z5 —24)(23 _ZO)(Zl —2’2). It is easy
that each of the varieties V;, ;, i,.4, is a union of the three projective hyperspaces. There are several cases. Con-
sider the case z5 = z4, 21 = z2. In this situation we have the line [: z; = %, 29 = ’Z‘—s, 23 = —2z5+U120, 24 = Z5.
And we have to consider the intersection of this line with quadric @ and cubic C. One can show that the inter-
section of the line [, quadric @ and cubic C is empty for general uy, us,u3. One can solve the rest analogously.
Lemma is proved

O
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Analogous to lemma, standard arguments show us that intersection of 3-dimensional space and cubic is
non-singular 2-dimensional cubic. Also, intersection of 3-dimensional space and quadric is non-singular quadric.
Thus, we get the intersection of cubic and quadric in 3-dimensional space. Using lemma and generality of u, we
get that this intersection is complete and non-singular. Thus, cubic defines non-singular divisor of type (3, 3)
on quadric @, i.e. curve of genus 4. O

Further, we will study morphism 7 : Y — U. Action of S3 on the ring O(Y) is defined as follows. Direct
calculations show us that permutations (1,2) and (1,2,3) act on the ring O(Y) by formulas:

(1,2) s a@,2) = a@,2), 4(1,3) € (2,3),A(1,2,3) < 4(1,3,2) (206)
and
(1,2,3) : a(1,2) 7> A(2,3), @(2,3) F> Q(1,3), A(1,3) =7 G(1,2),A(1,2,3) F7> 4(1,2,3), 4(1,3,2) 7 O(1,3,2) (207)

We will study O(Y)“* the ring of Sz-invariants. Using Noether’s theorem, this ring is finitely gener-
ated. Direct calculations show us that we can choose generators of this ring in following way: uq,uo,us,v =
(0(1,2,3) - 0(1,3,2))27w = (a(1,2) - a(2,3))(a(2,3) - a(173))(a(173) - a(172))(a(172,3) — a(173,2)). There is a relation:

—16w? + v* + 103 + cov? + c3v = 0. (208)

Here, ¢; € Fluy,us,us),i =1,2,3.
Using computing system Maple, we get the following formulas:

c1 = 6up + uf + 12uz — 3u3 — 15, (209)

o = 96uz + 48u3 — 24uy — 12uduy + 3uj — 24uduz — 24uzuy — 16u? + 8ud + 30u3 + Suzu? — 2uiu? + 48, (210)
c3 = 64 + 192u3 — 48u3 — 384uzu; — 32uzul — uS + 24uduy + 64ul — 96uius + 6ujuy + 208uF — SuSui— (211)
48u2u3 4 uyu? + 12uszuy + 224uzut — Suzuiui — 96u’ + 16uiu? + 24uzuiul + 16usus—
192u2u; — 192u; + 192u3 + 16u] — 15u3.

Clearly, the affine curve (208) is a non-singular for general u € Y. Fix general point u € Y. Also, let us
note that after standard compactification of fibre Vy, we get the quartic curve in P2. This curve is singular at
infinity. For simplicity, let us construct birational morphism ) — ) given by the following formula:

ui = u;,1=1,2,3 v—v, w—t= w_ (20.2) — a@s)) (0@ — ) @as) = a(1’2)). (212)
v (0(1,2,3) - a(1,3,2))

It easy that variety Yis given by equation:
—16t%0 + 03 + c10v? + v+ 5 = 0, (213)

where ¢; are given by formulas (209),(210),(211). It is clear that this birational isomorphism is compatible with
S3 - action. B
Also, we can transform )’ by the following substitution:

2 _
v =ABC =21
4
We obtain the following form of the y given by formula:
(—u3 + 4vy)w? — dv} + i + chvy + ¢y =0, (214)
where
¢y = =15+ u? + 12u3 + 6uy, (215)
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ch = dut — 24uz + 6uy — 12u3 — 12 — 2u3 + 6uzu; — 2uzu?, (216)

2
Cg :4(U3 — Uy +%+1)(1+U3—U1)2. (217)

Let us note the following symmetry 7 of the variety Y defined by correspondences: v : a¢; ;) = a j),%,] =
1,2,3 and v : a(1,2,3) = —a(1,3,2),4(1,3,2) = —0(1,2,3)- 1t is easy that action of v is compatible with S3-action.
Thus, there is an action of v on the ) defined by rule: v : uy = u1,us = —u2,u3z = uz,w — w,v — v, and
analogously, we can define action of v on the ). Consider natural projection: n: Y — U. It is easy that we can
define action of the involution v on & compatible with action on Y.

Proposition 75. Morphism: n : YU is elliptic fibration. Involution v provides the isomorphism of fibers
Yu and Yy ) foruel.

Proof. Fix general point u € U. Consider fiber of the variety Y over u given by formula (214). Consider natural
compactification of the curve Y, in the projective plane P? with homogenous coordinates (to : t; : t2). Put
t

w =%, v; = £, Thus, we get the following cubic curve:
0 0

(4ty — udto)t? = —4t3 + c\taty + chtat? + chtd. (218)
1

N (to:t2)?
compactification ), onto P! with ramification. One can check that for general point u ramification divisor has
degree 4. Using non-singularity and degree of ramification divisor, we get that cubic curve is elliptic. It is easy
that automorphism v preserves the curve. O

Studying natural projection: P? — P we obtain that this projection defines the covering of degree 2 of

7.6 Degree of morphism pr, function fields F(X)** and F(X).

In this section we will study birational properties of varieties X/S3 and X. In particular, we will study
ramification divisor of morphism ¢.
Expressing the variable a(; 2 3) from the equation a(i2ya23)a(1,3) = a(1,2,3)0(1,3,2), We get the following
isomorphism of function fields:
F(Y) = F(aq,2), a1,3), 4(1,2,3), 4(1,3,2)) (219)
and
F(Y) = F(uy,uz,u3, v, t; 16t°0 — v3 — c1v? — cov — 3 = 0) (220)

where ¢;, € Fluj,ug,usl,i = 1,2,3 and v,t are defined by (212). It is easy that F(X) = F(x1,z2,y1,y2)-
Recall that general fiber of pr is less or equal 12. Thus, we have for function fields the following inequality:
|F(X): F(Y)| <12.

Fix a general point (A = a(1,2), B = a(1,3),C = a(2,3), & = a(1,2,3), 8 = a(1,3,2)- Let us study a fibers of the
morphisms ¢ and pr over general point for obtaining of ramification divisors. For this purpose, consider the
following system of equations (194), (195), (197), (198). Recall that first and second equation define elliptic
curves £4 and Ep respectively.

For general B, &, g system of equations (195), (197), (198) defines a curve S. We can consider this curve
as intersection of two divisors D; and D into 3-dimensional variety £g x P?. We will study the intersection of
curve S and curve £4. For this purpose, let us project this curve onto P?. Denote this projection map by 7pe.

It can be shown in usual way that projection of mp2 is a S3 - equivariant morphism. Actually, (g : t1 : t2) €
7p2(C) iff o(to : t1 : t2) € wp2(S) for any permutation o € Ss3. Consider elementary symmetric polynomials:
01 = to +t1 + to, 00 = tot1 + tota + tita, 03 = tot1ta We can choose the coordinate of quotient P?/S3 as follows
(s1 = 0} : 89 = 0109 : s3 = 03). It is clear that curve £, transforms into curve given by formula s, = Ass.
Using Maple, we can check that curve 7pz2(S) transforms into curve S’ given by equation:

alslsg + agsgsLo, + agslsg + a4833233 + a5513533 + aGS%sg + a7slsgs§ + OLgs;L =0, (221)
with a; € C[A, B,C,«, 3, ABC = af]:
a1 = —B%a3p% + 9833 B,
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as = —B%C?B3a + 6BC?3a + B2C3 6% + 30383 + 9C3a? — 2BCB30?,
ag = BC®f%a — BC*fa — B*C® — C*a’B* + BC®a?B + B*C°B — B*C*aff + BC°a,
as = —2BC?[%a% + CB3a® — B2C*a® — 2BC3a?B + 3C%a? 8% + B2C3a?8,
as = —9C%a?B? — 3BC35%a + 14BC? %02 + BCB2a? — a3 — 6Ca’B? — 2BC? 0
—3BC3a?B — 60332 + BCa®B? + 9BC*Ba — B2C?a?B? — 2BC?Fa,
ag = 30*° + 6BC*a’f — B*C?a’f 4+ 9Ca* 5 — 2BCa’ 8% + B*CPa?,
a7 = —9a33% + B2CB3a? — 3BCa®B? — 3BCB3a? + B2Cal3%—
18BC?3%a? — B33,
ag = —B?C*B? — 2BC?B%0* + B2C3af? + Ca’B? 4 3C%a? 5% — 2BC3 f2a.
Thus, consider the fiber of ¢ over general point (A, B, C, «, 8) of variety Y. This fiber is the intersection of
curves: so = Asz and mp2(S). Omitting point (1: 0: 0), we get the following equation:

s2(Aay + ag) + s183(a1 + Aay + A%as + A3ag) + s3(A%ay + Atag) = 0. (222)

It can be shown that intersection of s; = Asz and S’ is 2. Thus, intersection of €4 and 7p2(S) is 12. Therefore,
we have proved the following proposition:

Proposition 76. Degrees of the morphisms pr and ¢ are 12 and 2 respectively.

Recall that we have the intersection index of D; s and Dé’ s 18 18. Thus, for general point P there are 6
points of Dj o N D/l,ﬁ’ in the ”infinite” part: toti1t2 = 0, 202122 = 0. One can calculate the intersection of D ,
with tot1te = 0 and with zpz122 = 0. We will study the points up to common permutation of ¢; and z; There
are several points:

e (1:0:0)x(0:=1:1)

o 0 0 x (1 2 2", where 2,2’ are different roots of the equation:
o —1)— (o —A) (o —1)z+ (o — A)2z2 =0
e (1:-1:0)x(0:0:1)

o (1:=1:0)x (1:1: %), where zis a root of the equation: (2 + 2)(2z+1) = Az

o 2y x (1 : 0 : 0), where z2',z” are different roots of the equation:

( :
o —1)— (o —B)(a —1)z+ (a/ — B)22 =0
e (1:1:2)x(1:-1:0), where z is a root of the equation: (2 + 2)(2z + 1) = Bz

Let us apply the involution ¢*? to divisor Dy g. It is easy that ¢*? preserves the divisors tot1t2 = 0 and
202122 = 0. One can see that for general A, B, o/, 8’ there are 6 common points (1: —1:0) x (0:0:1),(1:0:
—1)x(0:1:0),(0:1:-1)x(1:0:0),(1:0:0)x(0:1:-1),(0:1:0)x(1:0:-1),(0:0:1)x(1:—-1:0).
Using proposition 76, we get that intersection indexes of these 6 common points are 1 for general (A, B, o/, ') €
Y.

Remark. As we know, morphism pr is dominant. Note that pr is not surjective. For instance, one can
check that if —AB'+ AB—3a/3' —a’B = 0, then intersection indexes of the 6 common points are 3, and divisors
Dy and D} g, are irreducible. Thus, for point Py € {=Af' + AB — 3a/’ — o/ B = 0} the fiber pr='(F) is
empty.

Further, let us study function field of the varieties X, Y, X, Y. We obtain that F(X) = F(Y, 21, x2),
where x1,x2 satisfy to (14 z1 + z2)(1 + i + ?12) = A and equation (222) expressed in the variables x1, zo.
Thus, variables yi,y2 are rational functions over a2y, a(1,3), @(1,2,3), 4(1,3,2) and z1,z2. One can show that
F(X) = F(Y,z1), where x satisfy to polynomial relation of degree 12 over a1 2), a(1,3), a(1,2,3), 4(1,3,2)-
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As we know, |F(X)% : F(Y)| = 2, i.e. F(X)% is a quadratic extension of F(Y). Put h = s1/s3. h can be
described in terms of z;’s as follows:

(1421 + z2)3

L122 .

h= (223)

We have the relation:
h*(Aay + ag) + h(ay + Aay + A%as + A3a3) + A3ay + A'ag = 0. (224)
Using the isomorphism (219), we obtain the isomorphism of function field

F(X)% = F(x1,22,y1,92)% = F(a(1.2), a1,3), 4(1,2,3): 4(1,3.2), h),

where a(1,2), a(1,3), (1,2,3), 4(1,3,2), h are described in terms of x1, 2, y1,y2 by formulas: (186),(189),(190),(223)
and h satisfy to relation (224). Denote by d the discriminant of (224). Evidently, F(z1,22,y1,y2)% =
F(CL(172)7 a(1,3), 4(1,2,3)> 4(1,3,2) \/a) Of course, the choice of d is non-unique. Direct calculations show us that d
can be chosen S3 x S3 - invariant. Moreover, using Maple, we can choose d as element of F[uq,uz, us):

d = 325 — 27u3 + 2uzu? +uiu? + 138u? — 380u; 4 30usg + 326u3 — 56usu; + us — 2uzuius — 2ugus — 4us+ (225)
26”2’[/4% + 30uguy — Qu?ug — 86uqug — 20u? + u‘ll.
Thus, we have proved the following proposition:
Proposition 77. o We have the following isomorphism for function fields
F(X)% 2 F(ag,2), a1,3), 4(1,2,3), 4(1,3,2) V) (226)
where d is given by (225),
e There exists the isomorphism of function fields:
F(X)%3%% = P(X) = F(uy,ug, us, t,v, Vd; 16t>0 — v® — ¢;0? — o0 — ¢3 = 0) (227)

Using this proposition, we obtain that fiber X\, over general point u € I is a union of two isomorphic elliptic
curves C7 U Cy. This curves correspond to different values Vd. Also, it can be shown that the fiber X, over
general point u € I is a union of two isomorphic curves of genus 37. Let )V be the hypersurface in the affine
space F, (4u1,u2,u378) defined by equation: s? = d, where d is defined by formula (225). There exists a morphism
X — V, which fibers are connected, and natural projection V — U, which is a covering of degree 2.

Corollary 78. Consider morphism:

®=0Oopr: X —>U.

This morphism has the following Stein factorization: X — V — U, i.e. fibers of the maps X — V and V — U
are connected and discrete respectively.

Analogously, we have quite similar Stein decomposition for morphism © o pr o 7.

7.7 Involutions on the X.

In this subsection we will study involutions on the variety X and their properties.

Recall that we have the involution 7 : X — X given by rule: 7 : p; <> ¢;,7 = 1,2, 3 and there is a well-defined
involution 7 : X — X. We have the birational involutions j : X/S3 — X/S5 defined as automorphisms of the
coverings ¢ of degree 2. Also, recall that there is well-defined maps j : X — X.

Consider the involution k : X — X defined by formula: z; — z%, Yi — yi,z =1,2. It can be shown in usual
way that we can define involution x : X — & such that the following diagram:

lﬁ

K
_

Ry
52
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is commutative.
Let us study the relations between involutions j, k, 7 on the X'. As we know,

F(X) = F(uy,us,us,v,t, Vd; 1620 — v® — ;0% — cov — 5 = 0)

Proposition 79. Consider the involutions T, j, k acting on the variety X. T ok = koT. Let us express action
of the involutions in coordinates:

T(u;) = ug, j(ui) = wiy 6(w;) = ug, i =1,2,3, (228)

r(Vd) = -V, (229)
J(v) = v,§(t) = t,5(Vd) = =V, (230)
Kk(t) = —t, k(v) = v, K(Vd) = —Vd. (231)

Proof. Consider the involutions 7 and k defined on the X. It is easy that they commutes. Thus, 7 and
k commutes as involutions acting on X. Further, let us consider expression of element v/d in coordinates
T1,T2,y1,y2. One can show that 7(v/d) = —Vd,k(v/d) = —v/d. Direct calculations prove the rest of the
statement. O

Recall that automorphism of ¢ o 7 is the involution 7 o j o 7. Denote by t,v" the elements 7(t), 7(v) of the
function field F(X). Tt is easy that Tojo7(t') =t ,70jor(v') =v',T0jo7(Vd) = —Vd.

Proposition 80. Morphism pris = (pr,pror) : X — y Xu Y is a birational immersion, i.e. varieties X and
pri2(X) are birationally isomorphic.

Proof. Tt is sufficient to prove that the involutions j # 7 o j o 7. Actually, it means that map (¥, o71) : X —
ﬁ X j)v is a birational immersion and hence, pris is. Consider divisor D C X consisting of points z € X such
that j o k(x) = x. Also, consider the divisor 7(D) consisting of points such that 7o j o k(z) o7 = z. Using
commutativity of k and 7, we get that 7(D) is divisor of the points x satisfying to 70 j o 7o k(x) = . Divisors
D and 7(D) are given by equations: ¢t = 0 and ¢ = 0 respectively. We can consider divisors D’ and 7(D’) in X
the preimages of D and 7(D) under natural projection X — X respectively. It is easy D and 7(D) are given
by equations:

1 1 1 1 x x
Itz o)+ —+—) 1+ L+ 2ty )+ —+ )0+ 2+ 22)=0
Y1 Y2 1 T2 Ty T2 Y Y2
and 11 11
x x
Atza+y)l+—+ )0+ 24D a0+ —+ )1+ 2+ 8y =9
1 Y1 T2 Y2 T2 Y2 1 Y1
respectively.  Further, denote by f and g the elements It — Loy o2 - T+ EZ—?] — 2% and
- aop e - T zi’i — 212 pegpectively. It can be shown in usual way that 7(f) = —f and 7(g) = g.

Also, it is easy that divisors D and 7(D) are given by equation f+ g = 0 and —f 4+ g = 0 respectively. Consider
intersection of D and 7(D). It is easy that intersection D N 7(D) is given by f = 0 and g = 0. Using following
expressions for f and g:

we get 9 two-dimensional components of D N 7(D). Thus, j #TojoT.
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As we know, 7 provides automorphism of function field F(X’). Consider the elements ¢ = 7(¢), v/ = 7(v).
It is easy that t/,v’ are rational function of variables t,v,v/d, u1, ug, u3. Proposition 80 shows us that these
functions are non-trivially depends on v/d.

Fix a general point u = (uy,us,u3). As we know, fiber of variety X over u = (uy, us,u3) € U is a union of
isomorphic elliptic curves, i.e. &, = Cy U Cy which are corresponds to Vd and —/d respectively. Denote by E
the fiber Vy. Let us identify curves C; and Cy by means of the involution j. Also, fix a point P € E, let us
denote by (P,v/d) and (P, —/d) the fiber of morphism ¢ : X, — Y, over point P € Y, = E.

Consider morphism j o 7 acting on the X. As we know, j o 7(u;) = u;,j o 7(v/d) = v/d. Thus, j o 7 defines
automorphisms of the curves C7 and Cy. Thus, we obtain two automorphisms of the elliptic curve E. As we
know, there are two types of the automorphisms of E:

o shift: P+ P+ S, P € E for fixed element S € Pic’(E),
e reflection: P +— 2R — P, P € E for fixed point R € E.
Let two automorphisms be of second type. Thus,
jor: (P,Vd)— (2Ry — P,Vd);(P,—Vd) — (2R_ — P,—d)

for some fixed points R., R_ € E. Therefore, j o 70 j o7 is identity morphism. Thus, j = 70 j o 7, and hence,
we get contradiction with proposition 80.
Let one of the automorphisms is of first type, other is of second type. Thus,

jor:(P,Vd)— (2R — P,Vd);(P,—Vd) — (P + 8, —Vd)
for some fixed point R € E and fixed element S € Pic’(E). Thus, involution 7 is given by formula:
7 (P,Vd) — (2R — P,—Vd); (P,—Vd) — (P + S, Vd).
We get contradiction with fact: 72 = 1. Actually, automorphism
72 (P,Vd) — (2R — P + S,Vd); (P, —Vd) — (2R — P — S, —Vd)

is not identity element for any R € E and S € Pic®(E).
Thus, two automorphisms are of first type:

jor:(P,Vd) s (P+ 81,Vd); (P,—Vd) = (P + Sz, —Vd)
for fixed elements Sy, So € Pic’(E). Further, we get the following formula for automorphism 7:
71 (P,Vd) v+ (P + 81, —Vd); (P,—Vd) + (P + S2,Vd).

Therefore,

72 (P,Vd) = (P + 81 + Sp, Vd); (P,—Vd) = (P + S> + S1,—Vd).
And hence, S7 4+ 52 ~, 0. Denote by S the element S;. Thus, we obtain the following formula for 7:

7 (P,Vd) = (P + S, —Vd); (P, —Vd) — (P — 8,Vd) (232)
Thus, we have proved the following proposition:

Proposition 81. Consider birational immersion: X — Y Xy Y. Fiz a general point u = (ug,us,u3) € U.

Consider fibers Xy = C1 UCy, Yy = E. Curves C; and Cy are divisors in the E X E. Then C; and Cy are
divisors of type (P,P+ S),P € E and (P,P — S),P € E for some fived element S € Pic®(E).

Fix point u € Y. Thus, there is a point R € E such that S ~p R — Py, where Py = (0: 1: 0) is inflection
point. From irreducibility X it follows that the point R don’t define the section of fibration J — U. In
particular, point R depends on point u € U.
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8

Case of graph I's.

In this section we will study the variety X (3,6) of 6-dimensional representations of algebra B (Ts,6)-

8.1

Previous remarks.

In this subsection we recall the varieties, which we will study and some their properties and results. Also, we
will formulate main results and some ideas of proof.
Let us recall the varieties and their notation:

Also

X (6,6) is the variety of the projectors pi, ..., D6; q1, ..., g6 of rank 1 with relations:

6 6
1

i=1 i=1
up to GLg(F') - conjugacy, i.e. X(6,6) := MgB1(I's6)[1].
X (3,6) is the variety of the projectors p1,p2, p3; g1, ---, g6 of rank 1 with relations:

6
1
pip; =aiq; =0,Y_qi =1,Trpiq; = S
i=1
up to GLg(F) - conjugacy, i.e. X(3,6) := MgB1 (T'3,6)[1].

X (3,3) is the variety of the projectors pi,p2, p3; g1, g2, g3 of rank 1 with relations:

1
pip; = ¢iqj = 0, Trpig; = ¢
up to GLg(F) - conjugacy, i.e. X(3,3) := MgB1(I's5;3)[1]. As we know, X(3,3) = (F*)%.
Y (6) is the variety of projectors P; qi, ..., gs, where P is the projector of rank 3 and ¢y, ..., s are orthogonal
projectors of rank 1 with relations:
o 1
> g =1,qq; = 0,TrPg; = 3
i=1
up to GLg(F) - conjugacy, i.e. Y (6) := MGEG(%)[T, 3.

Y (3) is the variety of projectors P; g1, q2, g3, where P is the projector of rank 3 and ¢1, g2, ¢3 are orthogonal
projectors of rank 1 with relations:

1
iq; = 0,TrPg; = 3.

up to GLg(F) - conjugacy, i.e. Y(3) := M6A3(%)[T, 3]
Y is the variety of projectors P; @ of rank 3 with relation TrPQ = %

we have well-defined action of symmetric groups by permutations of p; and ¢;. We have the following

actions: group S:gp) acts on X(3,6) by permutation of p;. Also, we have the actions of S:gp) and Séq) on X(3,3)
by permutation of p; and ¢; respectively. Thus, consider the following quotients:

variety Z is a quotient of X (3,6) by action of group S?(,p )

variety X is a quotient of X (3,3) by action of group S x S{?
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variety J(3) is a quotient of Y(3) by action of Ss.

Moreover, we have the following natural maps:

e pri: X(6,6) — X(3,6) defined by rule: (p1,...,6;q1,---,q6) — (P1,P2, P35 415 G6),

pro s X(3,6) — X(3,3) defined by rule: (p1,p2,p3;41,--,96) — (P1,D2,P3; 41,92, 43),
¢1: X(3,6) = Y(6) defined by rule: (p1,p2,p3;q1,-.-,96) — (p1 + P2 + P3; q1, -, G6),
¢2 : X(3,3) = Y(3) defined by rule: (p1,p2,ps; 1,42, 43) = (1 + P2 + P33 1, 42, 43),
1 :Y(6) = Y(3) defined by rule: (P;q1, ..., q6) = (P;q1,42,43),
Y9 : Y (3) = Y defined by rule: (P;q1,q2,q3) — (P;q1 + g2 + g3).

Further, denote some involutions on the varieties:

involutions o®) : p; > piys,i=1,2,3;q; <> ¢j,5 = 1,...,6, 0D 1 g <> qj13,5 = 1,2,3;p; <> pi,i = 1,...,6,
T:pi <> qi,i=1,...,6 act on X(6,6). It is easy that 0(9 =700 o7,

Also, we can define action of ¢(%) on X (3,6).

We can define action of 7 on X (3, 3),

involutions op : P — 1—P,q; <+ ¢;,j =1,...,6 acts on Y(6). Denote this involution by 0536). Also we can
define action of ¢(9) on Y (6).

We can define action of 0533) on Y (3) by formula: P — 1 — P. It is easy that O‘S) oy =1o 0536).

Involutions 7: P <+ Q,op: P—1—-P,Q — Q and 0g : P — P,Q — 1—Q. One can check that cp = 0g
as involution on Y. We will denote this involution by o.

It is trivial that action of (9 on X (6,6) and X(3,6) commute with map pr;. Analogously, we have the
same properties in another cases.
Also, we have the following commutative diagrams:

prioc®

X(6,6)"7~ X(3,6) . (233)

J{PTI laﬁf)mm

X(3,6) — > v (6)
By theorem ?7, variety X (6,6) is birational isomorphic to fibred product X (3,6) xy ) X(3,6).

ro00(®
X(3,6)2% X(3,3) (234)
pr2 0'593)0(13207—

¢o0T

X(3,3) Y (3)

By theorem 77, variety X (3, 6) is birational isomorphic to fibred product X = X (3,3)xy(3)X(3,3). Denote
by (¢ the birational isomorphism: X (3,6) — X. Also, we have the following commutative diagram:

7
~ p

5 —"x(3,3) (235)

\Lp' lag’) oot

X(3,3) 27 v (3)
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where p’,p” are natural projection. This commutative diagram is a fibred product. There is an action of
involution (9 given by following formula:

oD (1, 20) = (29, 21),
where (z1,25) € X. It is trivial that p/ = p’ 0 0@,
Y(6) Ly (3) (236)
iwl 7Qoh2
Y(3) 2~y
We have the well-defined map: ¢ : Y (6) — Y (3) xy Y (3).
Further, let us introduce the following varieties and morphisms:

e there is an action of Sép) on X. Denote by Z the quotient )A(:/S:gp). It is trivial that variety Z and Z

are birationally isomorphic. Denote by E the birational isomorphism: Z — Z. Also, note the following
isomorphism:
72 X(3,3) /5% Xy X(3,3)/55 (237)

e there is a natural action of group G' = S3 X S3 x S3 by permutations of p;,i = 1,2,3, ¢;,7 = 1,2,3 and
¢i,i = 4,5,6 on X. Denote the quotient X /G by &X. It is easy that A" is a fibred product & xy 3y X.
Also, we have the morphism: @’ : X - Y(3) xy Y(3).

Moreover, we have the following natural morphisms:
e morphism ¢; : X(3,6) — Y(6) has the following decomposition:

X(3,6) — = A " Y (6), (238)

where 7 is a natural projection, p is a natural morphism.

e also morphism ® : X — Y (3) xy Y (3) has the following decomposition:

~ T ~ I

X 7 Y (3) xy Y (3), (239)

where 7 is a natural projection, g is a natural morphism.

It is easy that we have the following commutative diagram:

X(3,6) — = a Y (6) (240)

! l ]

Y(3) Xy Y(3)

=

l
N

Further, note the following relation between Z and X. Using isomorphism (237), we can define morphism:
7 X by natural factorization of action of group S3 x S3. These two symmetric group permute ¢;,7 = 1,2,3
and ¢;,7 = 4,5,6 respectively. Analogously, we get the morphism: Y (3) xy Y(3) = Y(3) xy Y(3). One can
show that the following diagram:

~ B

7T y(3) xy Y(3) (241)

7T><7TJ/ 7T><7TJ/



is commutative. _
Consider the morphism ®. It is trivial that morphism ® : X — Y (3) xy Y(3) is a composition of natural
projections and ¢5. Namely, we have the following commutative diagram:

F—"Xx(3,3) 2 v(3) (242)
p/wmi
X(3,3) 2
y
Y(3) 7ov: Y

8.2 Previous properties of the variety X (3,6).

In this subsection we will formulate previous properties of X (3, 6), which we will use for proof of its irreducibility.
First of all, let us make note about dimension of any irreducible component of X(3,6). As we know from
(generalized Hadamard matrices)?? variety X (3,6) is subvariety of (F*)!9 given by equations:

1+21+..4+25=0,14+t +...+t5 =0, (243)
1 1 1 1

I+ =4+ —=0,14—+...+— =0, (244)
21 zZ5 tq t5
t t

1+ 2+ 501+ 24 32, (245)
tq ts z1 Z5

where t;, 2;,4 = 1, ..., 5 are coordinates in (F*)!°. There is a description of these coordinates as traces of elements
P1qipig;,t = 2,3,j = 2,...,6. Therefore, dimension of any irreducible component of X (3,6) is more or equal 4.
Note that dimpX (3,6) = 4 follows from birationality of X(3,6) and X. Actually, map ¢ : X(3,3) — Y (3)
is dominant and finite in general point. Thus, we get that dimF)Z' =4.
Firstly, let us prove the following:

Proposition 82. Image of any irreducible component of X under p' (and, hence under p’") is dense in X (3,3).

Proof. Evidently, for any irreducible component p/(X) and p”(X) are both dense in X (3,3) or both subvarieties
in X(3,3). Consider irreducible component X; of X. Assume that p’(X;) and p”(X;) are both subvarieties in
X(3,3). Then dimension of fibers of the restrictions p’ and p” on X; are more than 0. Consider commutative
diagram:

p’ oo (D -

X —9/(Xy) (246)

J/p” iapoqhor

~ ¢a0T
P(Xy) ——=Yi,

where variety Y7 = ¢p 07 0 p’()z 1). Then for general point y € Y; fiber (¢ o 7)~!(y) has dimension more than
0. We studied properties of morphism ¢5 in the section ??. As we know, dimension of fiber (¢2 o 7)~1(y) is not

more than 1. Thus, fibers of the maps pr’ and pr” have dimension 1. Because of dimpX; = 4, we obtain that
dimpY; = 2. Consider the subvariety S = {y € Y (3)|dimg(¢2) 1 (y) = 1} of the Y (3). Therefore, ¥; C S. Let
us prove the following lemma, contradicting with dimpY; = 2.

Lemma 83. dimpS = 1.

Proof of the lemma. As we know, map ¢9 is given by formulas (186), (187), (188), (189), (190). Consider
point y = (A = aq 2y, B = a(1,3),C = ag2,3), @ = a(1,2,3), 3 = a(1,3,2)) € S. Using results and notation of section
7?7, we have several cases:
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all curves F4, Eg, Ec are elliptic,

only two curves among E4, Ep, Ec are elliptic,
e only one curve is elliptic.
e all curves are rational.

First case mean that (4, B,C) # (0,1,9). As we know, the variety (¢2)~!(y) is the intersection D1 4 NDy 4
in the product E4 x Eg. Here D; v and Dgﬂ, are defined by formulas (??) and o/ = &, 8" = g . Thus, divisors
D, o and D) 5 are reducible. As we know, these divisors are of type (3, 3). Hence, one of component of D o is
of type (1,1) or (1,2). It means that curves F4 and Ep are isomorphic or 2-isogenous. By symmetry, we get the
same property for curves £4 and Fc. By theorem Bertini, general divisor D; o is irreducible. Thus, there are:
one relation between A and B, because of E4 and Ep are isomorphic or 2-isogenous, one relation between A
and C' because of F4 and Eg are isomorphic or 2-isogenous, one relation between o and A, B, C because divisor
D o is reducible. Thus, we obtain 1-dimensional variety of points y € Y'(3,3) such that dimpe, ' (y) = 1 and
E 4, Ep, Ec are elliptic curves.

Consider the second case. Without loss of generality, suppose that F4 and Ep are elliptic. Assume that
C #0,ie. C =1or9 We can consider this case analogous to first one. Assume that C' = 0. Then we have

the following relations:

T T
I+ 242y B 22y
Y1 Y2 z1 1)

Assume 1+ 2L 4+ 22 = 0,1+ 28+ £ #0. It means that o # 0,3 = 0. Consider the equation:

1 1
(1+x1+x2)(1+—+—)(1+ﬂ+&):a
Y1 Y2 Ty 22

We can rewrite this equation by means of change the variables: x; — % We obtain the following equation:

AB
(141 +25)(1+ 1 +y2) = —(1+ 241 + a392).

Arguments similar to first case show that there is the relation between A and B describing isomorphism or 2-
isogenous of £4 and Eg. Thus, in this case dimpS < 1. Further, suppose that 1+ % + % =0,1+ % + a% =0.
Arguments quite similar to first case show us that F4 and Ep are isomorphic or 2-isogenous. Thus, we have
proved the second case.

Consider third case. Assume A =0,B=0and 1+ xy + 22 =0,1+ y% + yiz = 0. Then a = 0. We obtain
the following equations:

11
I+ 2+ 204+ L L8 o+ —+ )4y +p) = S0+ L+ 2,

5 Yy
Y1 Y2 Ty X2 Ty T2 C T o

Solving 1 4+ x; + 29 = 0,1+ L + leg = 0, we get that first equation defines non-singular curve of genus 4 for
general C. Thus, we obtain dimpS < 1 in this case. Analogous arguments prove the rest of third case.

Fourth case mean that A, B,C = 0,1,9. Thus, we get dimpS < 1. The lemma is proved.

Thus, we get dimpY; < 1. Hence, image of any component of X under p’ and p” is dense in X (3, 3). O

8.3 Function fields F(X(3,3)), F(X(3,3))%, F(X(3,3))% as extensions of F(Y(3)).

Firstly, let us study function fields of X (3,3) and its quotients.
Consider action of group S3 on X(3,3) by permutations of p;,i = 1,2,3. There is a normal subgroup Z3 <1 S3
and extensions of fields:.

F(Y(3)) C F(X(3,3))% C F(X(3,3))” c F(X(3,3)) (247)
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Using subsection ??, we have the isomorphisms:

F(Y(3)) = F(a@,2,3),a(1,2), @(1,3), @(2,3) ), F (X (3, 3))% = F(an,2,3),0(1,2),a(1,3), a2,3), 1), (248)
F(X(3,3)) = F(z1,22,y1,2) (249)
Also, we have quadratic extension: F(X(3,3)% <C F(X(3,3))%. Thus, F(X(3,3))% =

F(aq,2,3),0(1,2),a(1,3), @(2,3), h,w), where w satisfy to quadratic relation. Let us find this relation. As we
know, one can choose the generators a(i 23y, a(1,2),(2,3),a(1,3), b of the function field F(X(3,3))%, where
a(1,2), G(1,3), 4(1,2,3), 4(1,3,2), h are described in terms of x1,22,y1,y2 by formulas: (186),(189),(190),(223) and
satisfy to relation (224).

Consider the function field F(X(3,3))%s. The generators of this field are ae1,2), a(1,3), 4(2,3), 4(1,2,3); P, W,
where w is given in terms of z1, 2, ¥y1, y2 by formula:

w= (o —22)(1— )1 - —).

Therefore, we get the following relation:

a1 )

w2 = a%1,2) +18a(1,2) — 27 — 4(h + 5

). (250)

Thus, F(X)4 = F(a,h,w), where a,h,w satisfy to relations (259) and (250). Further, consider the field
F(X(3,3)). This field is cubic extension of F(X(3,3))?. Let us show that generators of this field are
a(1,2), 4(1,3), 4(2,3), 4(1,2,3), h, w, f, where f is given by formula:

i) 21
f=r1+e= 46—,
Z1 )

where ¢ is primitive 3-root of unity. Consider the element g = x1 + 62% + ei. Evidently, fg € F(X(3,3))%:.
Moreover, z1 + 2 + ?12 € F(X(3,3))%s. It can be shown in usual way that z1,z2 can be described in
terms of a(y2),a(1,3),a(2,3),4(1,2,3), b, w, f. As we know from subsection 7?7, y;,y2 are rational function over
a(1,2), 4(1,3), 4(2,3), (1,2,3); T1, T2. One can show that we have the following relation:

3
a
£ =1/8(aq2) — 3+w)® —3(1 — €)(h — 3ag 2 + 3) — 3(1 — %) (12

— 301(172) + 3) (251)

Thus, F(X(3,3)) = F(a(1,2), a(1,3), a2,3), A(1,2,3), I, w, f) satisfying to (224), (250), (251).
We have proved the following proposition:

Proposition 84. We have the following isomorphisms of function fields:

F(X(3,3))% = F(aq.2) aq,3), a2,3), 4(1,2,3) h), (252)

where h, a1 2y, a(1,3), 42,3, A(1,2,3) Satisfy to (224),

F(X(3,3))" = F(a,2),a1,3), 4(2,3) G(1,2,3), h, W), (253)
where w, h, a1 2y, a(1,3), 4(2,3), G(1,2,3) satisfy to (224), (250),

F(X(?’, 3)) = F(a(l,z), Qa(1,3), A(2,3), 4(1,2,3) h,w, f)a (254)
where f,w, h,ac 2y, a01,3), 02,3, 4(1,2,3) Satisfy to (224), (250), (251).
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8.4 General fibers of X(3,3), X(3,3)/Z3, X(3,3)/S3 and Y(3) over F? =
E

a(1,2),(1,3),%(2,3)) *

Let us consider the variety Y'(3). As we know, this variety is given by equation: a1 2,3ya(1,3,2) = a(1,2)0(2,3)0(1,3),
where a; ;) = 4TrPq; Pqj, a(; j ) = 8TrPq; Pq; Pqy. Consider the involution op defined early. In the coordinates
ai,j), Ai,jk) 0p-action could be described as follows:

OP © g 5) = Q)5 O k) — —0G k)5 J k =1,2,3. (255)

We have the following decomposition of p’ into sequence of the following natural maps:
X(3,3) —2 X(3,3)/Zs —2> X(3,3)/8; 2>V (3). (256)

Consider affine space F3 = SpecF[a(u), a(1,3)7a(273)]. Thus, we have dominant map: Y (3) — F3. Fix general
point pt = (A, B,C) € F3. Consider fibres of the varieties X (3,3), X(3,3)/Z3, X(3,3)/Ss, Y(3) over pt. In
this situation fiber of Y (3) over pt is affine line F! with coordinate o = a(1,2,3)- Compactify this fiber as
projective line PL. Let us compactify fibres of X(3,3), X(3,3)/Z3, X(3,3)/S3 and denote they by %, ¥/Zs,
3 /S5 respectively. Therefore, we have the following natural maps:

01

by Y/ Zs %

%85 —4 =Pl (257)
Using subsection 8.3, we have the following description of the function field of the algebraic curve ¥/Ss:
F(%)% = F(h,a), (258)
where h and « satisfy to relation:
h2a’py (a) + hapy () + ps(a) = 0. (259)
Polynomials p; («), pa(«), ps(«) are given by formulas:
p1(e) = (A%C + o® — CAa + 3A0)(BA? — ABa + 3Aa + o?),

p2(a) = —A3(9Ba?A+2a* +60* A~ Ba® A4+ Ba? A +9C Aa* +3BC? Aa—14BC Ao~ B?*C A*a+3Ca*+6C A Ba
+B2CAa* - ACa® + A*Ca? +2B*C?*A* + B*a? —9B?*a® — B?aCA+3B?*aCA—C?aBA? - C*aBA+C?*a*BA
+3Ba® — B%a® 4+ C%a? — C%a® + 18BaC + B%0?A + C%0?A — 9C%0?),
p3(a) = AS(~CBa + C?B +3Ca + o?)(B*C — CBa + 3Ba + o?).

It is easy that equation (259) is the relation (224). Note that degrees of polynomials p;,p2,ps are 4. Consider
the following homogenous coordinates (hg : h1), (oo : a1) of the product P} x PL. We have the following identity
for affine coordinates h = Z—é,a = 1. Thus, ¥/S; is the divisor of P} x P! of type (2,6). Evidently, map
¥ : X/S3 — PL is the natural projection. For general (A4, B,C) one can show that 3/S3 has two singularities
((1:0)x (0:1)) €P} xPL and ((0:1) x (1:0)) € P}, x PL which are double points. Hence, genus of ¥/S3 is
3. Further, let us calculate the ramification divisor Dy C P of the morphism . We have studied this divisor
in the subsection 7.6. Substitute affine coordinate o by g—é, we get that Dy is given by equation:

afag(py(ag, a1) — 4p1(ao, a1 )p2(ao, ar)). (260)
One can show that divisor Dy has several components. Proposition 77 shows that equation (225) is the only
one component with multiplicity one. This equation is in the terms of the coordinates u;,7 = 1,2, 3. Recall that
up =A+B+Cius =a+ ABC/a,us = (A—1)(B—1)(C —1). Consider the equations (250), (224). For fixed
(A, B,C) we can rewrite relation (250) in the following manner:

3

A
w? =A2+18A—27—4(h+7). (261)
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Further, let us consider the following compactification of ¥ /Z3. Curve X/Z3 C P xP} xPL is given by equations
(259), (261) in affine coordinates. It is trivial that natural map 6, is induced by projection P x P} x PL —
P} x PL. Consider ramification divisor of 5. Denote it by Dp,. By definition, Dy, C £/53. It is easy that D92
is given by equation:

hohy((A? +18A — 27)hohy — 4h?

—4A3h3). (262)

Finally, consider the following compactification of the curve 3. Curve ¥ C Py x P, x P}, x P}, is given by the
equations (224), (250), (251). Consider the ramification divisor Dy, C ¥/Zs. It is easy that this divisor is given
by equation:

wohohl( ((A=3)wo +w1)*hohy —wi (3(1

—€)(hy+(=3A+3)ho)h1 +3(1—€*)(A3hg+ (—3A+3)h1)ho)). (263)

8.5 Irreducibility of X(3,6).

In this subsection we will prove that variety X (3,6) is irreducible. Using birationality, it is sufficient to prove
the irreducibility of X.

Recall that there is the decomposition of p’ into sequence of the natural morphism (256).
involution (@ on the )A(:/Zg X Zs and 5(:/53 x S3. Thus, we get the following diagram:

We can define

~ % ~ 0. ~
X———X/Zs > XSy ———> X(3,3) (264)
6100@ 01 6, 01
U(Q)091~ 02 0

X /%y — X s x Ly —> X [Zg x S3 —> X(3,3)/Z3

02 0200 (D) 02 02

((1)092 -

X/SgH'X/Zg,XSg /SgXSgHX(?) 3)/53

0 0 foo (D 0

opob

X(3,3) —2 X(3,3)/Zs —2> X(3,3)/S5 Y (3)

We denote by 60;,i = 1,2 and 6 all maps of factorizations by the same groups. Omne can show that this
commutative diagram and any square is fibred product.
Fix the general point pt = (A, B,C) € F3. Thus, we obtain the following commutative diagram:

EXP}IE

9100(0)

$/Zs xp &L

02

01

01
(Do,

9200(4)

2/33 X]pl EHE/Zg, XPI E/Sd

0

by

0
01

02

c(Dopy

02

é1

02

oo (@)

opof

01

[Zs xp1 )Ts —2> T/Zg xp1 £/S5 1> 5/

02

2/53 X[Pl E/Sd E— 2/53

0

Y/ Zs

/S5

Z/Zg ><]p%Z E—>E/Sg ><]p%Z ZG—>Z

Z3

IP)l

[e3

(265)

Assume that variety X is reducible, i.e. X = U;T:l)?j. Using proposition 82, we get that for any component
(A,B,C) € F? curve ¥ xp1 ¥ is reducible.
Let us prove that ¥ xp1 3 is irreducible. It will be sufficient for irreducibility of X.

)A(: variety pr’ ()N( /) is dense in Y (3). Thus, for general point pt =

One can show that curves ¥ and ¥/S3 are irreducible.
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Proposition 85. For general point pt = (A, B,C) € F3, curve ¥ Xp1 3 is irreducible.

Proof. Our proof has the following steps:

¥/83 xp1 X1/S3 is irreducible curve,
e ¥ xp1 /S5 is irreducible curve,

e ¥ xp1 ¥/Z3 is irreducible curve,

e X xp1 ¥ is irreducible one.

First step. As we know, maps 1 and 1) o 0(?) are coverings of degree 2. Assume that X/S3 x F1 X/S3 is
reducible. Using proposition 82, we obtain that there are 2 components. Each component gives us the map
¥ /S5 — /S5 such that the following diagram:

X/Ss (266)

L

opob

X/S; ——P}
Thus, we have the following relation for ramification divisor Dy:
op(Dy) = Dy (267)

Recall that this divisor is defined by equation (225). Recall that this equation is expressed in terms of variables
u1,u2,us, where uy = A+ B+ C, up = a+ 8, u3 = (A—1)(B — 1)(C — 1). Using relation 8 = 45 we
get that op(u;) = u;, i = 1,3,0p(ug) = —uy. Consider equation (225) as polynomial over uy. One can see
that ug-degree of (225) is 3. Also, for general uy,ug all coefficients of (225) are nonzero. Hence, op(Dy) # Dy.
Contradiction. Therefore, 3/53 xp1 %./S3 is irreducible.

Second step. Consider the curve X xp1 3/S3. Assume that this curve is reducible. As we know, 1 :
Y xpL X /S3 — X is covering of degree 2. Using proposition 82, we get that there are only 2 components of
¥ xp1 ¥ /Ss. Each component is isomorphic to ¥. Consider the covering ¢, : ¥ Xp1, ¥/Ss — X/Zs Xp1, 3/Ss.
This covering has degree 3. Under assumption of reducibility of ¥ xp1 3/S3, we obtain that curve X /Z3 xp1 3/S3
has two components. Each component is isomorphic to 3/Zs. Analogous to first step, we obtain that each
component defines the map such that the following diagram:

)/ Zs (268)

=

/S5 xp1 5/85 27 58,

is commutative. Hence, ramification divisors of the maps /53 xp1 £/S3 — ¥/93 and ¥/Z3 — % /S5 coincide.
It can be shown in usual way that ramification divisor of X/S3 xp1 ¥/S3 — X/S3 is 7' (op(Dg). Thus,
coincidence of the divisors means that 6~ !(ocp(Dy)) = Dy,. And hence, op(Dy) = 0(Dy,). Divisor Dy, is
reducible. Component of Dy, with multiplicity one is defined by equation: (A% +18A — 27)hohy — 4h? — 4A3hZ.

It is easy that for general A, we get that there are two components h; = thy and hy = ATShO, where c is a root

of equation: (A% + 184 —27) = 4(t + ATJ) Denote these two components by 6(Dg,)" and 6(Dy, )" respectively.
Further, these components are defined by equations:

a?t*pi(a) + atpa(a) + pa(a) = 0, (269)

02401 (a) + aA?tpa() + pa(a)t? = 0, (270)
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respectively. Hence, degf(Dy,) = 12. Recall that degDy = 6. It contradicts with coincidence. Therefore, curve
¥ xp1 X1/S3 is irreducible. Second step is proved.

Third step. Assume that curve ¥ Xpi Y/Zs is reducible. Using second step, we get that there are two
components of ¥ xp1 %/Z3. Thus, curve ¥/Z3 xp1 %/Z3 has two components. Each component defines the
isomorphism: ¥/S3 xp1 X/Z3 — ¥ /S3 xp1 ¥/Z3 such that the following diagram:

E/Sg X[p(ll E/Zg (271)

|

J(Q)oez

E/Sg Xpi E/Zg HE/S&; X]Prlz E/Sg

Denote by 2592 the ramification divisor of map: X/S3 xp1 ¥/Z3 — X/S3 xp1 ¥/S3. Therefore, we have the

following relation: 0@ (Dg,) = Dy,. It is casy that Dy, = 6~ (Dy,). Using universality of fibred product, we
obtain that
0(Do,) = op(0(Ds,)) (272)

As we know from second step, (Dsp,) has two components 6(Dy, and 0(Dy,, which are given by equations (269)
and (270) respectively. We have two cases: op(0(Dp,) = 0(Dp,) and op(0(Dy,) = 0(Dy,). Consider coefficients
Pk, ps and pf, p? at o and o® of (269) and (270). One can see that these coefficients of the polynomials (269)
and (270) are py = t%;pf = A(t(6 — B — C) — 2A3) and pf = A%;p! = AS(A(6 — B — C) — 2t) respectively. It
is evident, op transforms pf — —pl, pg — pi; pE — —pr, pg — pg. First case means that pipj = 0, second case
means that pgpi + pspr = 0. One can see that for general (A, B, C) first and second cases are impossible. Third
step is proved.

Fourth step. Assume curve ¥ xp1 3 is reducible. Using third step, we obtain that ¥ Xp: X has three
components. Each component defines map: ¥ /Zs Xp1 3 — X /Zs Xp1 3 such that the following diagram:

/23 xp X (273)
ell
0(4)091
E/Zg XP}){ EHZ/Z?, XP}, Z/Zg
is commutative. It can be shown in usual way that
03 001(Dg) =0cpobyob, (Dg) (274)
Direct checking in style of third step shows that for general A, B, C' it is not true. Fourth step is proved. O
Corollary 86. Variety X (3,6) is irreducible.

8.6 Properties of the morphism: ¢, : X(3,6) — Y (6).

In this subsection we will prove that morphism p: Z — Y (6) is a birational immersion.
Consider morphism 5 : Y (3) = Y. As we know from subsection 77, we have the following decomposition:

Y(3) —>U —=Y (275)

where U is affine space F® with coordinates w1, us, us defined in subsection??. Also, note the following property
of this decomposition:

YE) ey ey (276)
op Upl ai
Y(3) ¥y U U v



One can show that op acts on U by rule: op : uy — uy,us — —us, uz — uz. This action coincides with action
of 7 from subsection ??. Also, recall that we have the following commutative diagram for X (3, 3):

X(3,3) 2> v(3) (277)

¢20Ti (4 \L
w/

Y (3) —2 U

Using these diagrams, we obtain that the diagram (242) can be rewritten in the following manner:

57 X33 - v(3) (278)
pao7 v
o Y(3) —2 oy
or or
X(3,3) 2T v(3) 2y
%2 o4 /%
Y (3) ¥h ) Yy v

Thus, we have proved the following proposition:

Proposition 87. Image of variety X under map @ is in the subvariety Y (3) x4 Y (3), i.e. we have the following

commutative diagram:
X
l \

Y (3) %y Y (3) > Y (3) xy Y(3)

(279)

Corollary 88. Similar statement for varieties Z, X and morphisms 11, ® are true. Also, we get that the
following diagram:

Y3 < Y(3) (280)

F——5D03) xu V(3)

15 commutative.
Proposition 89. Morphism Ji : Z — Y (3) xy Y (3) is a birational immersion.

Proof. Tt is sufficient to prove that morphism @’ is a birational immersion. Consider the following commutative
diagram:

T (X)) = V(3) xu Y(3) (281)
lp, \Lpr
pe 2 Y(3)

where pr is natural projection. As we know, degp’ = 2,degpo = 2. Hence, we have the following cases:

deg®’ =1,2,4. Let us prove that degd®’ = 1. It is sufficient to prove that map deg®’ = 1, i.e. ® is a birational
immersion.
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Fix general point u = (u1,us,u3) € U. Denote by fu, Xy and &, the fibers of 55, X and Y(3) over u
respectively. Thus, fiber of Y(3) xy Y(3) over u is a product &, x &,. Statement of the proposition means that
for general point u € Y morphism ®” is a immersion of the fiber ??u = Xy Xg, Xy into &y x Ey. As we know
from subsection ??, for general point u € U curve &, is elliptic curve given by (??). Fiber X, is the union of
divisors (P, P + Sy) and (P, P — S,), P € &, for Sy € Pic®(£,). Recall that there is the symmetry v of Y (3)
defined by rule: a(; ;) = a jy,a(1,2,3) = —0(1,3,2),4(1,3,2) — —0(1,2,3)- Ldentify the fibers &, and &, (y) via 7.
It can be shown in usual way that under this identification, involution op : Y(3) — Y(3) has the following

description:
op : (Pou) = (2R — P,y(u)), (282)

where (P,u) € &4, R = (0:1:0) is inflection point in the compactification of &, as cubic curve in P2. Fix the
point P € &,. Thus, we obtain the following diagram:

/ | Y
P+ S, u
2R — P F Sy v(u)

2R—P$Su:|:5,y(u)

Condition deg®’ = 4 means that all points 2R — P F S, & S,y (u)y coincide. It is clear that it means 2.5, = 0.
But it contradicts with proposition ?7?. Thus, this case is impossible.

Consider case deg®’ = 2. In this case, we get 2R — P — Sy — Sy(u) = 2R — P + Sy + Sy(u) and
2R — P+ Sy — Syu) = 2R — P — Sy + Sy)- Assume that P = R. Thus, points R + Sy + Sy ) and
R — Sy + Sy are points of second order of the cubic curve &,. This pair of points is defined over O(U). As
we know, second order’s points of cubic curve are in the line. Therefore, third point of second order defines
the section of fibration Y(3) — U. Consider the fibration Y(3) — U. As we know, this fibration is given by
equation (?7?). Points of second order of cubic curve &, are intersection of &, and line w = 0 in P2. Denote this
intersection by V. Variety V is given by equation:

— 403 4 jv? + chvy + ¢ =0, (284)

where ¢, ¢}, ¢4 € Fluy,us] are given by formulas (??7). As we know, one can transform variety V into (??). It is
clear that V is irreducible. Thus, polynomial from formula (284) is irreducible over F and hence over F(uy, us).
Therefore, there are no points of second order of cubic curve &£, which are sections over . Thus, case deg®’ = 2
is impossible. There is only one possible case deg®’ = 1.

O

Corollary 90. Morphism u from diagram (238) is a birational immersion.

Let us prove the ag’)—invariance of the image ®(X) C Y(3) xy Y(3). Recall that there is a well-defined

(3) (3)
P P

involution o5’ acting on Y (3) Xy Y (3). Also, recall that there is a well-defined involution ¢’ on the variety

V(3) xy Y(3). It is sufficient to prove that ' (X) is Jg’) - invariant for ag’) -invariance of the ®(X). Fix general

point u € U. Consider the fiber of the variety Y(3) xy Y(3) over u. As we know, this fiber is a product of

isomorphic elliptic curves &, x &,. Also, consider the fibers X, and XJ@,)(“). As we know from proof of the
P

proposition 89, the fiber X, is a union of four elliptic curves of the following type: (P,2R — P+ Sy £ Syw)),
where P € Y(3)uy = &u, 2R — P £ Sy %+ Syw) € Y(3)y(u) = Eu- After applying U§)7 we obtain that og)(fu) =
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(2R — P,P 4 Sy % S,)), where 2R — P € Y(3)y(u), P+ Su £ Sy(u) € Y(3)5(u)- Let us check that o' (Xy) =
Yo ) = Mt
Let us start from point 2R — P € Y(3) ). Using properties of X, we obtain the following diagram:

/

2R — P+ 8,(4) —— ~(u)

|

P:I:S.Y(u) —>u

T

P+ Sv(u) + Su

2R — P (285)

Thus, we obtain that ag)(zﬁl) = ./'Fv(u), and hence, q)’()?) is o) _ invariant subvariety of Y(3) xy Y(3).
Therefore, we have proved the following theorem:

Theorem 91. Image ®(X) = ji(Z) C Y (3) xy Y (3) is 0533) - invariant.

9 Variety of orthogonal pairs in si(6).

9.1 Previous remarks.

Fix two partitions 6; and 69 of {1,2,3,4,5,6} into two complement subsets. Without loss of generality, assume
that 61 = (1,2,3) U (4,5,6) and 02 = (1,2,4) U(3,5,6). Denote by p the permutation (3,4). Denote by I's o the
complete bipartite graph with 3 and 2 vertices in upper and down rows respectively.

Recall that we denote by A<y, .. :.> the subalgebra of B(I") generated by elements t1, ...,ts € B(I'). Denote
by ¢1, ..., g6, P1, P2, p3 the generators of B,.(I'3 ¢). Thus, we have the following natural maps:

j : A<¢117Q2,P1,P2,p3> = BT(F3,2) - A<Q1,q2,Q37p17p2,P3> = BT(F3,3)a (286)
j/ : A<Q17(I2710171021173> = BT(F3,2) - A<Q17Q2aQ471)17[)27p3> = BT(F373)’ (287)
i A<f11142»q37P17p2,P3> = BT(F3,3) - BT(F376)7Z./ : A<q1,qz,q4,p17p27p3> = BT(F&B) — BT(F&G) (288)

defined obviously. It is trivial that we have the following commutative diagram:

J
A<Q17Q2 »P1,P2,P3> > A<Q1:Q27Q37P1,P2,P3> (289)
-/
1
A<Q1,L12~,Q47P1,:D2 \p3> B, (F3,6)

Analogously, we have the following commutative diagram:

J
A<Q57¢Z5,P1 ,P2,P3> > A<Q4,QS7QG7P1,P2,P3> (290)

.

B.(T36)

A<Q3,q5’QG7P1,P2,P3>
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Consider algebra Bs ¢ which is a quotient of the B (T's,6) by ideal I generated by the element Zle q; — 1.
As we know

~
B3¢ = Acqy,q0.05.p1.p2.03> *AcQipypops> A<q4,45,06,p1,02,p5> (291)

where Q = ¢1 + g2 + g3. Also, we have the isomorphism of algebras:

~
Bse = A<Q1;¢12’Q47P1,P2,P3> *A 0l ipy poaps> A<Q37Q5,QG,P1’P27P3>7 (292)

where Q' = q; + g2 + qs. It is trivial that one can get second isomorphism from first one by com-
pOSitiOIl With automorphism p- Identify Variety M6<A<Q1,qz,QS7P17P2,P3> >k-'4<Q:,p1,p2,p3> A<Q47Q5,QG,P1,P27P3>) and
Me(Acqr go.qa.p1.p2.p5> XA iy mamas A< s a5.00,p1,p2.05>) With X (3,3) Xy (3) X(3,3). It is easy to see that p is
a birational involution of X(3,3) xy(3) X(3,3). Note that second identification is obtained from first one by
composition with p. Standard arguments shows that isomorphisms (291) and (292) correspond to birational
morphisms: ¢,{op: X(3,6) = X(3,3) xy(3) X(3,3).

It is easy that we have the commutative diagram:

A<p17p2,p3> - A<q1,q27p1,pz,p3> (293)

| !

A<‘15’QG7PI,P2 ,p3> BB,G

Therefore, we get the natural morphism: A<g, gp1,ps,ps> ¥*A<py py s> A<as,ge,p1,p2,ps> — B3e. Using diagram
(289), 77, (?7?), we get the following diagram:

~
A<Q17Q2,Q371)17P27P3> *A<Q;p1,p2,p3> A<Q4>Q57QG7P1,P2,IJ3> - B376

L e

A<¢117qz4717172-,173> *Alpy poips> A<Q57‘167P1»P27P3> P

\

A<Q1>427q47P1>P2;P3> R P A<Q37Q5;Q6:1’17P27P3> = Bsg
(294)
It is easy that there is unique 6-dimensional module of algebra A<y, p, p,> such that rank of p; is 1.
Identifying varieties Meg(A<qy go.p1.pops>) a0d Me(A<qs go.p1ipe.ps>) With algebraic torus X (3,2) = (F*)?,
we get the natural map: X (3,6) — X(3,2) x X(3,2). Thus, we get the following commutative diagram:

X(3,6) —° 5 (295)

b

X — X(3,2) x X(3,2)

Also, one can take the quotient by symmetric group Sép ), Using commutativity p and Sép ), we get the following
commutative diagram:

L (296)

b
7— X(3,2) x X(3,2)/S

Further, consider the map: Ag = Ac<pigy,...q6> — B36, where P = pj +ps + ps. Consider algebra A< p.q; 40>
and morphism: Acp.g g> — B% (T'3,2). Also, consider subalgebra Acps. = F @ F. It is easy that we have
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natural morphisms: Acps, — Acpig, go> and Acps — Ay by ops,0> defined obviously. One can define the

natural morphism: A<pg, go> *Aps A<Pgsge> = A<arqrprp2ps> ¥Acp, py > A<as.ge.p1.p2.ps>- 1t could be
shown in usual way that there is a commutative diagram:

A<Q17Q2,P1,P2,P3> *Acp) poipa> A<¢15;Q6,P1’P27;D3> > BB,G (297)

| |

AcPgi,g> *Aps A<Pogs,ge> Ag

Identify variety of modules Mg(A<p,q,.0o>) and Mg(Acp g; 46> ),atisfying to condition: rkP = 3,rkq; = 1,
with affine space Y(2) = F'!, we obtain natural map: Y (6) — Y (2) x Y(2).

Denote by 7', 7%, ©” the natural morphisms X(3,6) — X(3,2) x X(3,2), Y(6) — Y(2) x Y(2) and
X(3,2) x X(3,2) = Y(2) x Y(2) respectively. It is easy that

7 (P1,D2, P33 @1, - G6) > (D1, D2, P33 41, 92) X (D1, D2, D35 G55 G6) (298)
Ty 2 (Piqu, .y q6) = (Piq1,q2) X (P;qs,qs) (299)

and
7" (p1, P2, P33 41, G2) X (P1, D2, D35 G5, q6) > (D1 + P2 + P31, 42) X (P1 + P2 + P33 G5, G6) (300)

Using technics of subsection??, we get the following commutative diagram of varieties:

X (3,6) T >~ X(3,2) x X(3,2) (301)
¢1l . ﬂ'”l
Y (6) - Y (2) x Y(2)

Also, using standard arguments, we get the following commutative diagram:

A<P,q1¢12> *Acps A<P,Q5,QG> > A<P’Q1,CI2,Q3> *Acpo> A<P’Q4,Q5,¢JG> (302)
A<P71117q2,q4> *A_pors A<P7q3-,qsyqa> As

where Q = q1 + q2 + g3 and Q" = q1 + 2 + q4. Identify varieties Me(A<p,g;,g2,q5> *Acp.os A<Pgs,gs.q6>) and
Me(A<Pgra2,00> A p oo A<Prgs,as,06>) With Y(3) Xy Y(3). Also, we can define birational involution p acting
on Y (3) Xy Y (3) transforming one identification to other one. Thus, we have the commutative diagram of
varieties:

Y (6) Y (3) xy Y (3) (303)
YB)xyY(3) ——=Y(2) x Y (2)
Consider map: 7 : X — X(3,2) x X(3,2) defined by rule:
71 (p1,P2,P35q1,42,93) X (P1,D2, P35 G4, G5, Gs) — (P1,D2,P35q1,42) X (P1, P2, P35 G5,46) (304)

It is easy that 7’ is a composition of birational morphism ¢ and 7. Thus, we have the following commutative
diagram:

X(3,2) x X(3,2) (305)



Let us consider the quotient of the varieties in the higher row of diagram (305) by action of symmetric group
Sép ). There is a commutative diagram:

3 7

Z Z X(3,2) x X(3,2)/5P (306)
] w
Y (6) — > Y(3) xy Y(3) v Y(2) x Y(2)

Denote by II the composition: 7"/ o 7 : 7 — Y (2) x Y(2). Also, using diagram (296), we get the following
commutative diagram:

Z (307)

9.2 Properties of morphism 7 : X — X(3,2) x X(3,2).

In this subsection we will prove that morphism 7 is dominant and has degree 12.

As we know, variety X is a fibred product X (3,3) xy(3) X (3,3) and X (3,3) = (F*)*. Y (3) is a hypersurface
in fo,B,c,a,ﬁ with coordinates defined by equation ABC = «af3. It is clear that X (3,2) = (F*)2. Define the
coordinates in X (3,3) xy(3) X(3,3) as follows: a; = 36Trp1q1p2q2, b1 = 36Trp1g1p3G2, v1 = 36Trp1q1p2gs, y1 =
36Trp1q1p3qs, az = 36Trp1gspags, ba = 36Trp1gsp3gs, T2 = 36Trp1qapags, y2 = 36Trp1gip3gs. Then morphism 7
is given by formula:

T (al, bl, X, :l/1) X (CLQ, b2, T2, y2) — (al, bl, az, bg) (308)

Fix a general point (a1 = a,by = b,as = ¢,bp = d) € X(3,2) x X(3,2) = (F*)%. Let us prove that
7 a,b,c,d) is non-empty. It can be shown in usual way that pre-image 7 !(a,b,c,d) is a solution of the
following system of equations:

1
(1+a+x1)(1+ +x )= (1+c+a:2)(1+ St ) (309)
1 2
1 1 1 1
A+o+y)A+ -+ —)=1+d+y)1+ 5+ —) (310)
by d e
L YO R A /% PR YO P 3 (311)
by a > d = yo c T
1 1 b 1 1 d
A+a+z)(1+-+—)1+- +y1) —(I+c+z)(1+ 5+ —)1+ = +y2) (312)
b 1 a T d Yo T2
=+ )b+ 2+ ) = (2 A+ d )1+ S+ 22 (313)
a 11 n b oyl c T b2 d y'
Let us simplify this system. For this purpose, introduce the following variables:
N _1—|—aa 1+Cﬁ 1+bﬁ 1+d _a+b _c+d
1 \/&’2 \[,1 \[72 \/g’% \/@772 Jed
Y2
T = — 2

=,z=— .
VST e Va
One can check that there are relations between oy, B, v, = 1, 2:

QBN — By —4=0,i=1,2. (314)
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Thus, we obtain the following system:

1 1
(a1 +z)(ar + —) = (a2 +2)(az + 7) (315)
1 1
(Br+y)(B1 + ;) = (B2 +w)(B2 + ) (316)
x Y z w
— )= — — 317
n+ D+ 2 = et D+ D) (317)
1 Y 1 w
(ar+2)(Br+-)n+ ) =—(2+2)(B2+ )2+ ) (318)
Y x w z
1 T 1 z
(a1 + )Br+y)n+—)=—(e2+ )2+ w)(r2+ —) (319)
x y z w
Also, let us rewrite two last equations in the following manner:
(01 +2)(B1+ )+ 2) = (0o + 2)(Ba + ) + ) (320)
0é1331y’72w—0422’2w71y
1 w 1 Y
(o1 + ;)(/31 +y) (2 + ;) = —(a2 + ;)(52 +w) (1 + ;)- (321)
Consider the following compactification of these equations: we will consider F* with coordinates x,y, z,w as
open dense subvariety of product P} .~ xP!  x P! | xP!. ' One can describe non-homogenous
(zo:z1) (yo:y1) (20:21) (wo:w1)
coordinates in terms of homogenous ones as follows: © = i—;, y= z—;, z= z—;, w = 5—;

Denote by E1, E» the curves in the product Pgwowl) X P%zo:zl) and P%yo:yl) x ]P’%wo:wl) given by formulas (315)

and (316) respectively. It is easy that these curves are elliptic for general i, as, 51, 82. One can prove the
following proposition:

Proposition 92. For general oy, s, 81, B2 elliptic curves E1 and Eo are not isogenous.

Denote by Roo, Ro1, R10, R11 the points (0: 1) x (0:1),(0:1) x (1:0),(1:0)x (0:1),(1:0) x (1:0) of
curve E; respectively. We will denote by R{q, R, Rig, R1; the same points of Es. Denote by Qoo, Qo1, Q10, @11
the points (1 : —ag) x (1 : —ag),(1: —a1) X (—ag : 1), (—a; : 1) x (1 : —ag),(—a; : 1) X (—az : 1) of curve
Ey. Also, denote by Qg, Qb1, Q19, @11 the points (1: —51) x (1: =F2),(1: —=pB1) x (=f2:1),(=F1: 1) x (1:
—B2),(=B1 :1) x (=82 : 1) of curve E5. It is easy that

{Roo, Ro1, R10, R11} = E1 N {xoz12021 = 0}, { R0, Ry, Rig, Ri1} = E2 N {yoy1wowr = 0}

Using proposition 92, we obtain that NS(Ey x Es) = Z @ Z, where NS(E; x E5) is Neron-Severi group of
E; x E5. One can check that there is an involution 7 : F1 X Ey — E; X Es defined by

T (ZL’() : ZL’l) X (yo : yl) X (ZQ : Zl) X (’wo : ’U}l) — (Zl Z.TQ) X (yl Zy()) X (2’1 : ZQ) X (’U.)l : wo).

Recall that there are divisors of E1 x FEs of two types: ”horizontal” - hy = point x E5 and ”vertical” -
hs = E; x point. Denote by D; and Dy the divisors in E; x Es given by (320), (321). Rewrite these equations
in homogenous coordinates. We get D;:

(1o + 1) (Bry1 + o) (V2wi20 + woz1) + (220 + 21)(Bawr + wo) (1Toy1 + T1Y0) = 0 (322)

and Do:
(1z1 + 20)(Bryo + Y1) (V2woz1 + wizo) + (az21 + 20)(Bawo + w1) (V17190 + Toy1) = 0 (323)

It is easy that 7(D;) = Dy. Also, denote by D the divisor given by equation (311). We will say that divisor D
of E1 x Es is of type (a,b) iff D - hy = a,D - hy = b. Let us prove the following proposition:
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Proposition 93. D; and Dy of Ey X Ey are divisors of type (4,4). Divisors Dy and Do are reducible:
= Qoo X B2 + F1 X Q1 + D}, Dy = Q11 X Ea 4+ Ey x Qg + D3, (324)

where D}, i = 1,2 are diwisors of type (3,3). In particular, D} ~p D}. For general oy, B, i = 1,2 divisors
1, Db are irreducible. D} - D) = 18.

Proof. Tt is easy that Qo X Ea + Eq X Q}; is a component of D;. One can check that for general a;, 8;,71 = 1,2
there are not a vertical and horizontal components in Dj. Hence, if D},i = 1,2 are reducible, then there are
components of type (1,1) or (1,2). But it means that curve E; and Es are isomorphic or 2-isogenous. Using
proposition 92, we get the required. O

Corollary 94. For general point (a,b,c,d) € X(3,2) x X(3,2) pre-image 7 (a,b,c,d) is a finite set. Thus,
morphism T is dominant.

Let us calculate degree of pr. For this purpose, consider points of D} - D) which lying in the
XoZ1Yoy12021wowi = 0. One can show that there are 4 points: Rog X R, R11 X Rj1, Ro1 X R}y, Ri0 X Rfy;. Also,
we have to find points of intersection D] N D4 which lying in D. It can be shown in usual way that there are
points S1 = Q10 X Q1,52 = Qo1 X @}y € DN D} not lying in D. For general point (a, b, ¢,d) € X(3,2)x X(3,2)
intersection multiplicities of these point is 1. Therefore, we have proved the following:

Proposition 95. Degree of morhism 7 : X — X(3,2) x X(3,2) is 12.

9.3 Properties of fibration Il = 7/ o7 : Z — Y (2) x Y(2).

In this subsection we will prove that general fibre of II is a surface of general type.

Consider map 7 : X — X (3,2) x X(3,2). Let us introduce natural compactification of X (3,2) x X(3,2) as
follows. X(3,2) = (F*)? is an open subvariety of projective space P?, i.e. compactification of X (3,2) x X (3,2)
is P2 x P2. Denote by 7" the rational mapping: P? x P2 — P! x P! defined on X(3,2) x X(3,2)..

Also, consider S?Ep ) _ invariant compactification X¢ of X such that there is morphism: 7 : X¢ — P2 x P2,

By construction, morphism 7¢ coincide with 7 on the open subvarieties X and X(3,2) x X(3,2). Degree of 7¢
is 12.

Proposition 96. Ramification divisor D c P2 x P2 of 7€ is of type (a,a),a > 22.

Proof. Let us make the following notes: Denote by [pt], [line] the classes of point and line in P2. It is well-known
that

Ho(P? x P?) = Z, Hy(P?> x P?) = Z @ Z, Hy(P* x P?) = Z D Z © Z, Hs(P? x P?) = Z @ Z, Hs(P? x P?) = Z.

Generators of homology groups Hy, Ho, Hy, Hg, Hg are [pt] x [pt]; [pt] x [line], [line] x [pt]; P x [pt], [line] x [line], [pt] x P?;
P2 x [line], [line] x P? and P? x P2 respectively. It is well-known that Pic(P? x P?) = Z & Z.

Using obvious symmetry, we get that D is homologically equivalent to a([line] x P?2 + P2 x [line]). Let us
prove that a > 22. Fix general line [ in P? and general point P € P2. Consider the line [ x P C P? x P2,
Consider curve C' = pir~ (I x P). As we know, #|c : C — | x P is a map of degree 12. Ramification divisor of
7|c is the intersection D N1 x P. By Hurwitz’s formula, we obtain the following formula:

29¢ — 2 =12(=2) + deg(D Nl x P) = —24 + a, (325)
where go is genus of curve C. Hence, a = 22 4 2g¢c > 22. O

Let us prove the following proposition:

Proposition 97. Fiz a general (A, B) e P xPL. As we know, if A, B # 0,1,9,00 then 7""~1(A, B) is a product
of elliptic curves. Denote by XA g the fiber of X°¢ over A, B, then fiber XA g 18 a surface of general type.
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Proof. Consider map: 7"’ : P? — P!, where P? and P! are compactifications of X (3,2) and Y (2) respectively.
It is easy that map: 7" in non-homogenous coordinates is given by formula: (z,y) — (1+z + y)(1 + % + %)
As we know from subsection??, this map defines the elliptic family. It is well-known that A, B # 0,1,9, co fiber
of this family is elliptic curve. Denote by E4 x Ep the fiber of 7”7 over A, B.

Further, we have the map: 74 p : X4 p — Eax Ep. Consider Stein factorization of TAB:

X4 p XG5 — Eax Ep (326)

Morphisms 7 and 73 have connected fibers and discrete fibers respectively. Moreover, surface X j, p have no
rational curves, hence it is minimal surface. Further, ramification divisor of T coincides with ramification divisor
of ma. Thus, canonical class K4 p of X§ 5 is 7, (D) and, using proposition 96, we get that K3 p > 0. Since
X4 p is covering of product of elliptic curves, it is irrational. Thus, X§ p is a surface of general type (cf.??).

Therefore, )?j‘ p is surface of general type. 0

Further, consider II : Z — Y(2) x Y(2). As we know, morphism II is a composition of Z —
X(3,2) x X(3,2)/S¥ and X(3,2) x X(3,2)/S%) — Y(2) x Y(2). Let us consider compactification Z¢ such
that I1¢ : Z¢ — P! x P! is a composition of Z¢ — P2 x ]P’2/S?()p) and P? x ]P’2/S?()p) — P! x PL.

Proposition 98. Fiber of P? x IP’Q/S:(,)p) over point (A, B), A, B #0,1,9,00 is a K3 - surface.
Proof. We have to prove that quotient of E4 x Ep by action of Sép ) is a K3-surface. One can check that
Zs < Sép) acts on E4 x Eg without fixed points. Thus, quotient of E4 X Eg by Z3 is a complex torus. Also,

one can prove that quotient Sép)/Zg acts on B4 x Ep/Z3 by formula: x — —x,2 € E4 X Eg/Zs. Thus, quotient
Fa x EB/Sép) is a Kummer surface. O

Moreover, we can prove the following proposition:
Proposition 99. For general point (A, B) € P x P! the fiber I17(A, B) = ZA,B s a surface of general type.

Proof. The proof is quite similar to proof of proposition 97. O

9.4 Birational involutions of ~Z.

In this subsection we will study properties of some birational involutions of Z. We will denote by Bir(X)
the group of birational automorphisms of the variety X. Recall that permutation p = (3,4) is a well-defined
involution of X(3,6). Using ¢, we can define birational involution (o po (! € Bir()z). As we know, actions
of S3 and Sg commute. Therefore, we have the well-defined involution p € Aut(Z) and birational involution
Eo po Zfl € Bir(Z). As we know, Y(6) is Sg - variety. One can check that u is Sg - invariant morphism. Thus,
we have the following commutative diagram:

Y(3) xy Y (3) (327)

fioC
/ ‘x
z - Y (6)
fioCop

Y(3) Xy Y(?))
Actually, pou=po E Using Sg - invariance of p, we obtain that ¢ opou=1opuop=rpo zo p. Therefore,

we get the required commutativity of diagram (327).
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Proposition 100. Assume z,z' € Z such that 0536) ou(z) = wu(z"). Then Jg’) ofiol(z) = iol(?) and

oW ofioCop(z) =fioCop().

Proof. Applying 1, we obtain that 1) o Ugf) o u(z) =t o u(z"). Further, using relation Ug) o) =1o 0596)7 we
get that ag’) ot opu(z) =1opu(z). Using commutativity of diagram (327), we get the required statement.
(3) P P

P

Analogously, we obtain 05’ o ro (o p(z) = oo p(z). O

As we know, Ji : Z — Y (3) xy Y (3) is a birational morphism and image (%) is ag’)—invariant. Thus, we can

define birational involution ! o 0533) op€E Bz’r(Z ). Using birational morphism: ¢ : Z — Z, we get birational

involution o/ = oo Jg’) ofio( € Bir(Z). Also, we can define involution p~* o o’ o p € Bir(Z).

Proposition 101. Morphism o’ o p~t o o’ o p € Bir(Z) has finite order.

Proof. Note the following properties of morphism: IT o E : Z = Y(2) x Y(2): involution p acts on fibres of the
morphism: ITo . Let us prove that ITo ¢’ = II. Actually, we can define involution op on Y (2) x Y(2) by the
rule: P— 1— P,g — ¢,i=1,2,56. It is easy that natural morphism py : Y(3) xy Y (3) = Y (2) x Y(2)

satisfies to relation: py o ag) = op o py. Also, we have the following commutative diagram:
Y(3) xy Y(3) (328)
/
e
L—=7 Py
K
Y(2) xY(2)

Further, HoEo o' =py oﬁogo o =py oag’) oﬁo&: op oHoE. Study action of involution op on Y (2) x Y (2).
As we know, Y (2) x Y(2) = Mg(< P;q1,q2 >) x Mg(< P;gs,q6 >) =2 F[TrPg1Pqo, TrPqsPgs]. One can
calculate: op(TrPq;Pg2) = Tr(1 — P)q1(1 — P)ga = TrPqi Pgs. Analogously, op(TrPgsPgs) = TrPgsPgs i.e.
op acts on Y (2) x Y(2) trivially. Thus, ITo Zo o' =1Ilo Z Therefore, involutions ¢’ and p act on the fibres of
the morphism: ITo E : Z =Y (2) xY(2). Since general fibres of IT are surfaces of general type and birationality
of Z , we obtain that general fibres of II o Z are surfaces of general type too. Recall the following property of
surface of general type:

Proposition 102. (¢f.??) Let S be a surface of general type. Assume v : S — S’ be a birational morphism,
where S’ is a minimal model. Then we have isomorphism: vo Bir(S)ov~! = Aut(S"). Also, there is a constant
¢ such that |Bir(S)| = |Aut(S")| < ¢ K2,.

Therefore, group generated by p, o’ is finite, and hence, birational automorphism ¢’ o p~! 0 ¢’ 0 p of Z has

finite order. O
Let us formulate the following useful proposition:

Proposition 103. We have the following relation for birational involutions o’ and p: o' op = pod’.

Proof. See appendix. O

Corollary 104. Involution o' commutes with Sg acting by permutations of q;,1 = 1, ..., 6.

Proof. By proposition 103, ¢’ commutes with p = (34). By construction, ¢’ commutes with S3 x Ss,
where S3’s act by permutations of ¢;,4 = 1,2,3 and ¢;,¢ = 4,5,6 respectively. Thus, ¢/ commutes with
(12),(23), (34), (45), (56), and hence with S. O

Let us prove the following important proposition:
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Proposition 105. Image ¢1(X(3,6)) = u(Z) CY(6) is a agf)—invariant and p~to 0536) ou=da.

Proof. Recall that we proved early that there are birational immersion: fio ¢ : Z — Y (3) xy Y(3). It means

that there is open subvariety U C Z such that restriction fio C|y : U — Y(3) xy Y(3) is an immersion.
Using commutativity of the upper triangle of the diagram (327), we get that restriction ply : U — Y(6) is an
immersion too. Consider intersection V' = N, es,p01(U) - open subvariety of Z. It is clear that o ¢ o pi|y :
V =Y (3) xy Y(3), plv : V— Y (6) are immersions. Recall following properties:

e for any v € V there is v € V such that 053) ofiol(v)=fiol(v),ie o'(v) =0

® i 0p; = pyou for any p; € Sg.

. woaf) :ag) o .

° aﬁf’)oﬁogopl(v)=ﬁ050p1(v’)ZﬁOZomoa'(”)-

Consider morphisms: [[7 =[], cg,ioCopi:V = ][, 5, Y (3) xy Y(3) and [[¢p = [[,cg, ¥ 0 p1: Y(6) =
[, s, Y(3) xy Y(3). It is easy that the following diagram:

Vv

Y (6) (329)

Hp1€SG Y(3) Xy Y(?))

As we know from 7?7, morphism [] ¢ is a birational immersion. It is trivial that restriction of [] @ to V is an

immersion. Hence, restriction of [t ou to V is an immersion. Consider point [] {/30 (), v € V. We will write
point [[ 4 op(v) in the following manner: [[¢opu(v) = (Yopiou(v))y ess- Let us prove that agf) ou(v) = p(v').

Commutativity of ag’) and Sg means that 0533) o[[r(v) = (Ug) ofioCo p1(V))press = (fioCopy 00" (v))p1ess =

(/7 © C °p1 (UI))P1€SG = H ﬁ(’l}/). Thus7
o o [T ) = [T ) = [T eut)) (330)

Further, using commutativity of diagram (329), we obtain that 05,3) o [[u(w) = Ug) o [Tt o pulv) =
(0533) oo propu(v))pess; = (¥o 0536) o p1 o pu(v))p ess- Using commutativity of 0'§36) and Sg, we get that
(W ool 0 propv))pes, = (Yo pioay opu®)yes, = [[¥(of) opuv)). Using (330), we get that
Hw(ag) o pu(w)) = [1¥(u()). Since [[+ is an immersion, we get that 0536) o pu(v) = p(v'). Therefore, we

get that for any v there is v’ such that 05,6) o pu(v) = u(v'), i.e. image u(V) is Ugj)

following identity: pu=!o 0536) ou=ro. O

- invariant. Also, we get the

10 Appendix A: varieties F;(f;) and Ex(f§).

In this section we will calculate dimensions of F1(f§) and Ea(f§).
Let us calculate dimension of Ey(f}). Applying results of subsection 6.3, we get that there is a filtration:

E§2)(fé) C E%l)(fé) = E1(f§). As we know from proposition 52, we have the following immersion:
B () cJew), (331)
0

where 6 runs over all partitions of {1, 2,3} into union of two non-intersecting subsets. Without loss of generality,
assume that 0 = {1} U {2,3}. Thus, C(6) is defined by equations:
1 1 1 1
14+ 200 +203=0,14—+ —=0,14+230+233=0,1+4—+ — =0 (332)
Z22 %23 Z32 %33

and the same system of equations for yss, y23, Y32, y33. Let us formulate the following useful evident lemma:
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Lemma 106. System of equation:

11
Ltatb=01+ "4 =0 (333)

has two solutions: (e,€%) and (€2, ¢€), where € is a 3-th primitive oot of unity.

Using this lemma, we get that there are only finite points satisfying to system (332).
In the case E£2)( 1&), we have the following system:
222 | 223 Z32 | %33 (334)

11 11
142994203 = 0,14 —+— = 0, 142504233 = 0, 14— +— = 0,1+ 24222 0 14 22, 58 _ g
222 223 232 233 232 233 222 223

and the same system for y’s.
We get that following proposition:

Proposition 107. Subvariety E1 consists of finite set of points.

Further, consider subvariety Eo(f}). Without loss of generality, consider the case 6 : {1,2,3} =1U2,3. It
can be shown in usual way that there are 4 f-maximal subquivers of Qr3: subquivers @1 and Q2 have two
l.c.c. with ordering: {1} > {2,3} and {1} < {2, 3} respectively. Subquivers Q3 and Q4 have three l.c.c. with
ordering: {2} > {1} > {3} and {3} > {1} > {2} respectively.

1 1 1 1
2 Q 3 2 A 3 2 A 3 2 A 3
subquiver )¢ subquiver ()2 subquiver QX3 subquiver (4

It is easy that morphisms s;,7 = 1,2 are isomorphisms and hence, D;(0) = D}(#),i = 1,2. Components
(H})"'M(Q1) = (Hy 051)"*M(Q1) and (H;)~*M(Q>) are defined by equations:

1+290+223=0,1+232+233=0 (335)
and
1 1 1 1
1+ —+—=0,1+—+—=0 (336)
22,2 22,3 23,2 23,3

respectively. Also, components (H;) M (Q3) and (H;)~'M(Q4) are given by equations:

1 1 z z
1+ — 4+ — =0,1+230+233=0,1+ 22422 _ (337)
22,2 22,3 22,2 22,3
and L 1
z z
1+ — 4+ —=0,1+22 422 _ 0142994295 =0 (338)
23,2 23,3 23,2 23,3

respectively. It is easy that dimp(Hj) 'M(Q1) = dimp(H;)'M(Q2) = 2,dimp(H;) 'M(Q3) =

dlmF(Hf)_lM(Q4) =1. .
 We have similar description of components for D5(¢). Denote corresponding components of D2 (6) by M (Q1),

M(Q2), M(Q3) and M(Q4). Consider components M (Q1) and M(Q2) of D1(f). Firstly, let us consider varieties

M(Qq) xy3) M(Qj),4,j = 1,2. Study subvariety M(Q1) Xy 3y M(Q2) C X(3,3) Xy (3) X(3,3). We have the
following equations for this subvariety: equations (335), equations of type (336) over y’s:
1 1 1 1

1+ —+—=01+—+—=0 (339)
Y2,2 Y2,3 Y32 Y33
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and

z z zZ. zZ.

1+
23,2 23,3 222 22,3 Y32 Y3,3 Y2,2 Y2,3

(340)

Expressing 25 3 and z3 3 in terms of 22 5 and 23 » respectively, we get that M (Q1) is an open subvariety of (F*)2.

Analogous statement for M (Q2) is true. Ome can show that equation (340) is not trivial. Thus, we obtain

that dimpM(Q1) Xy 3) M(Q2) = 3. One can consider cases M(Q;) Xy (3 M(Q;),(4,7) = (1,1);(2,1);(2,2)

analogously. It is easy that dimpM(Q;) Xy (3) D2(0) < 3,4 = 3,4 and dimpD1(0) Xy (3) M(Q,) < 3,5 =3,4.
Therefore, we obtain the following proposition:

Proposition 108. Dimension of any component of Eo(ff) is less or equal to 3.

11 Appendix B: Varieties Fi(fs) and Es(fs).
11.1  Variety Ei(fs).

In this section we will study F4 for morphism fg.
Firstly, let us calculate dimension E;. As we know from results of subsection 53, we have the following
filtration of Ej:

B (fs) € BV (fo) = Ex(fo)- (341)

Recall that we have to consider partitions of {1,...,6} onto non-intersecting subsets I, ..., 51 with condition
|I;| >2for all j =1,...,s+ 1. Thus, s+ 1 < 3 and we have the following cases:

e partition: {1,...,6} =11 Ul and || =2, |I5| = 4.
e partition: {1,...,6} =I; Uy and |I;| = |I2] = 3.
e partition: {1,...,6} =1 Uy U I3 and |I;| = |L2| = |I3] = 2.

Third case corresponds to E?)( f6). It is easy that third case is a partial case of first one. Consider the first
case. Without loss of generality, we can consider partition 6; = {1,2} U {3,4,5,6}. Let us calculate dimension
of C(#). Let us write defining equations of C’(61) = (F*)' xy ) (F*)'%:

1 1 1 1
14+ 230+233=0,14 —4+ —=0,14+240+243=0,1+4—+ — =0, (342)
<32 233 242 243
1 1 1 1
14+250+253=0,14+—+ —=0,14260+2635=0,1+ — + — =0 (343)
252 253 262 263
14282 4 38 g g2 g g e B g 22 B (344)
Z22 %23 Z32 233 Z22 %23 Z42 243
I B e YT (. R O I ) (345)
222 223 252 253 262 223 262 263

Also, we have analogous system for y;;. Further, let us calculate C(6) = S~1(C’(#)). For this purpose, recall
the equations defining X (3,6):

1 1 1 1 1
IT+200+2320+240+2520+262=0,1+ —+ —+ —+—+—=0 (346)
222 232 242 R52 %62
1 1 1 1 1
14293+ 233+ 243+ 253 +263=0,1+—+ —+ — 4+ —+ — =0 (347)
223 233 243 253 263
1+£+£+£+E+E:071+£+ﬁ+ﬁ+ﬁ+ﬁ:0 (348)
223 233 243 253 263 222 232 242 252 %62

We have similar system over y;;. All these equations define C(6;) as subvariety of (F*)'9 x (F*)!9. Using
lemma 106, we get that
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Proposition 109. C(6,) consists of finite set of points. And hence, component of F1(fs) which corresponds to
the first case, consists of finite set of points.

Consider the second case. Without loss of generality, consider the following partition: 62 = {1,...,6}
{1,2,3} U{4,5,6}. We have the following system of equations:

1 1 1 1
14+ 249+ 243=0,1+4 — 4+ —=0,14 250+ 253 =0,1+ — + — =0, (349)
249 243 252 %53
1 1 z z 2z z
T4 223 = 0,14+ — 4 — =014 242 142,25 _ (350)
Z62 263 Z22 223 Z42 243
1422058 g2 3 g B 56 g 22 (351)
222 223 252 253 222 223 262 263
z z z z z z z z
1+£+ﬁ:0,1+£+ﬁ:0’1+£+£:071+£+ﬁ:0, (352)
Z32 %233 Z42 243 Z32 233 Z52 253
14 282 268 gy B2 B8 (353)
232 233 262 263

We have the same system for y;;. Also, we have the system of type (346), (347), (348) for z; and y;;. Using
lemma 106, one can prove that

Proposition 110. C(6;) consists of finite set of points. And hence, component of F1(fg) which corresponds to
the second case, consists of finite set of points.

Therefore, we have the following:

Proposition 111. Variety Eq1 consists of finite set of points.

11.2 Variety E, for MBss and fibred product.

In this subsection we will study Fs for morphism fg.
We have to consider the following two cases:

o {1,..,6} = L1 Uly,|I1]| = 2,|I5] = 4.
° {1,...,6} =1 Uls, |Il| = |12| =3.

Consider the first case. Without loss of generality, fix the following partition: 65 : {1,..,6} =
{1,2} U {3,4,5,6}.
Proposition 112. Mazimal 8-subquivers have the following view:
3 3

13
2 4 2 4 2 iq
1 5 1 5 1 is5
6 subquiver Q1 6  subquiver Qg ig  subquiver Q3

Proof. As we know, any l.c.c. of the maximal 8-subquiver @) has at least two vertices. Thus, we have two cases:

e () has 2 l.c.c. with 2 and 4 vertices,
e () has 3 Lc.c., any l.c.c. has 2 vertices.

Considering of different ordering on the set of l.c.c. gives us the proof.
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Subquiver @;,i = 1,2 has two l.c.c. Also, there are orderings of l.c.c.: {1,2} > {3,4,5,6} of Q; and
{1,2} < {3,4,5,6} of Q2. Subquiver Q3 have three l.c.c. with ordering: {is,i4} > {1,2} > {is,is}-
Subvarieties M (Q1) and M (Q2) of D{(#) are defined by equations:

1+ z32+233=0,14242+243=0,1+252+253=0,1+252+ 263=0, (354)
z Zq « z. z. z5 25 z z
1+£+ 3732071_’_ 4,2+£:0’1_~_ 72_;'_7’3:0’1_’_&_'_&:07 (355)
222 223 22,2 %23 72,2 %23 722 %23
and 1 1 1 1 1 1 1 1
I+ —+—=014+—+—=01+—+—=0,1+—+—=0, (356)
Z32 233 242 243 252 253 762 76,3
1+'2’27,2+@:O71+Z272+@:0’1+Z2’2+@:O,1+227’2+%:O (357)
232 233 242 743 %52 %53 %62 %63
respectively.

Without loss of generality, assume that i3 = 3,44 = 4,15 = 5,ig = 6. In this case, subvariety M(Q3) is given
by system of equations:
1 1 1 1 22,2

22,3 22,2 22,3

I+ —+—=01+—+—=0,1+ + =0,1+—+ =0, (358)
23,2 23,3 24,2 24,3 23,2 23,3 24,2 24,3
z z z z
1+ 2504253 =0,1+ 2604263 =0,1+ 22423 _ 14552203 _ (359)
22,2 22,3 22,2 22,3
z z z z z z z z
14224558 014582 4 268 14 552 53 14 502, %63 (360)
Z32 23,3 23,2 233 Z42 243 Z42 243
Consider subvariety M (Q1). Let us formulate the following useful lemma:
Lemma 113. Consider system of equations over ay,as:
l+a+a=01+2+%2 =042, € F* (361)
il i)

o If (x1 # 1 and o # 1 and x1 # 2, then this system has unique solution,

o if (x1,22) = (1,1), then solution of system has the following view: (a1, —1 — a1),a; # 0, —1,

o ifry =ax9#1 orxy =1 orxze =1, then system has no solution.
Proof. Straightforward. O
Corollary 114. We have the similar statement for system:

1 1 T
1+ —4+—=0,1+—+
aq a9 ay as

2 0 (362)

Consider natural morphism: p : S(Q1) — (F*)2,, ., .. Using this lemma, we obtain that if 255 # 223,
then preimage of p over (222, 22,3) is unique and preimage of p over (1,1) is 4-dimensional. Thus, M (Q1) has
two-dimensional component M) (Q;) and four-dimensional component M (Q;). Consider two-dimensional

component M (Q,). Using lemma, we get the following equations for (H;)~'M®)(Q,):

232 = 24,2 = 252 = 26,2,%3,3 = 24,3 = 25,3 = 26,3 (363)
Consider (Hj o s1)"*(M®)(Q1)). Using equations (346),(347),(348), we get the following system of equations:

1 4 1 4
1—}—22724-42372 =014 —+ — :0,1—5-2’2’3—&-423,3 =014 —+ —=0, (364)
22,2 23,2 22,3 23,3

79



14223 44583 g 1422 432 (365)

22,2 23,2 22,3 23,3
One can check that this system has no solutions. Thus, (Hj o s;)~'M®)(Qy) = 0.
Consider four-dimensional component M) (Q1). In this case, we have relation for (H;)™*M®)(Q,): 290 =
293 = 1. Using equations (346),(347),(348), we get the following system of equations for (H; o s1) ' M®(Q,):

1 1 1 1
24+ z32+242+252+262=0,24+—+—+—+— =0, (366)
232 242 252 262
1 1 1 1
2+ 233+243+253+23=0,24+—+—+—+—=0, (367)
233 243 253 %63
V4 Z. V4 V4 Z. Z Z
gy B2 2 552 B2 _ g B3 S 58 S (368)
23,3 243 253 26,3 23,2 R42 252 26,2
and
I+ z30+233=0,14+242+243=0,1+252+253=0,14 262+ 263 =0. (369)

Show that equations (367) and (368) follow from (369) and (366). Denote by S C (F*)* the surface defined by
equations (366). For this purpose, let us prove that transformation z; o — —1 — 2; 2,7 = 3,4,5, 6 is a birational
involution of S. It is easy that 24+ (—1—232)+...+ (=1 —252) = =2 — 232 — ... — 26,2 = 0. We get the following
second equation from (366):

1 1
14 232 o1+ 26,2
Transforming this expression, we obtain:
21+ 232)- (L4 26,2) = (L+ 232) (1 + 282) (L + 25,2) — oo = (L4 242) (1 + 252) (1 + 26,2) =
1 1 1

1
2302422522622+ — +—+ — 4+ —) = (24 232+ 222+ 252+ 262) = 0.
23,2 24,2 25,2 26,2

Also, consider equation: 1+ 2; 2 +2;3 = 0,7 = 3,4,5,6. Transform it as follows: 1+ =2 Zi2 2 + i =0,i=3,4,5,6.
We get that i; :—1—; i=3,4,5,6. Thus,
23,2 26,2 1 1 1 1

24 ==+ +==24+(-1-—)+.(-1-—)="2———..——=0.
23,3 26,3 23,3 26,3 23,3 26,3

:; zz; = 0 analogously. Therefore, we have proved the following proposition:

Proposition 115. (H} os1) Y (M(Q,)) is birationally isomorphic to surface S C (F*)* defined by equations
(366).

This surface is a hessian of nonsmgular cubic surface ([?]). Consider natural projection: py : S — (F *)Z3 274"
It is easy that degree of p; is 2

Lemma 116. o If(z3,2,242) satisfy to 24 z3 2+ 242 # 0, 24+ L 1 L 40, then |p171(z3’2724’2)| is 1 or 2,

23,2 24,2
o if (z32,242) satisfy to 2+ z3 2+ 242 =0, 2—}—232 232 12:07 then
Pr (23,2724,2) =10,
o if (232,242) satisfy to 2+ z32 + 242 =0,2+ Z3 st s = =0, then dimpp; *(23.2, 24.2) = 1.
Proof. Straightforward. O

Proposition 117. Surface S is an irreducible K3 - surface.
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Proof. Assume that S is reducible. Since S is defined by two equations in (F*)*, then dimension of every
component is at least 2. Using lemma 116, we get that dimension of every component is 2. Consider natural
compactification S C P* of the surface S. It is easy that if S is reducible, then singular locus of S has dimension
at least 1. It can be checked in usual way that singular locus of S is finite set. Contradiction. Thus, S is an
irreducible surface. Further, one can show that singular locus of S consists of ordinary double points. It is
well-known that quartic surface with isolated double points is a K3 - surface. O

Also, one can prove analogous results in the case of Q.

Further, consider (H;) 1M (Q3). Using corollary 114, we get that if (22.2,223) # (1,1) and 222 # 223,
then z; 2, 2;3,% = 3,4,5,6 can be expressed as rational functions of 292,223, and 232 = 242,233 = 243,252 =
26,2, 25,3 = 26,3- Namely,

229 — %23 z92(z23 — 1)

23,2 = 242 = ) 25,2 = 26,2 = — (370)
293 — 1 222 — %23
222 — %23 22,3(%22 — 1
733 =243 = —————" Z53 = 263 = _z2alma 1) (371)
22,2 — 1 22,2 — 223
Also, we have the following transformation:
259 253 Z% g — 6220223 + Z% 3+ 2’2,22% 3+ 222+ 223+ Zz,szg 2
14222y 20 7o ’ d 3 = =0 (372)
23,2 23,3 (22,2 - 22,3)
Thus, (H;)"'M(Qs) C D;(0) is a curve given by equation:
2572 — 622’22«'273 + 2573 + 22722313 + 22,2 + 22,3 + 22132572 =0. (373)
Therefore,
dimp(H; 051) "M (Q3) < 1. (374)
Remark.

It can be shown in usual way that (H})~1M(Q3) is an irreducible singular rational curve with singularity (1, 1).

It is clear that we have similar results for D(). Denote by M(Q1), M(Qz) and M(Qs) components
of D5(0) corresponding to maximal f-subquivers @, Q2 and Q3. Using arguments similar to studying of
M(Q;),i=1,2, we get that components (Hj o s9)~ (M (Q;)),i = 1,2 are K3 surfaces. This K3 surface is given
by equations (366) in variables y; 2,7 = 3,4,5,6. Denote this surface by S’. Also, denote by p} the projection
S" — (F*)? We would like to prove that dimpFE2(fs) < 3. Since dimp(H7 o s1)"1M(Q3) < 1, we can

Y3,2,Y4,2
consider only subvarieties (H; o s1) M (Q;) Xy (6) (Hj o $9) 1M (Q;),i,j = 1,2. Without loss of generality,
consider subvariety (Hj o s1)"'M(Q;) Xy () (Hj 052) "' M(Q;) C X(3,6) xy(5) X(3,6). Consider the following
composition of morphisms:

N C .
(H o 1) M(Q1) xy(s) (Hj 0 52) " M (Qa) — (H} o1) \M(Q1) x (Hj 052) ' WI(Q2)  (375)
lpl N
(F*)gg,z,z4,2 X (F*)22!3,2,y4,2
Show that (Hyos1) ™' M (Q1) Xy (6)(Hj0s2) "' M(Q2) does not coincide with (Hjos1) ™' M(Q1)x (Hjos2) ™' M(Qo).
Consider divisor of (F*)z&%%2 X (}7'*)53’2’1/4,2 given by equation:
z z z z
24,2 %43 Z3,2 %33 Y4,2 Y43 Y32 Y33
where 235 = —1 — 232,243 = —1 — 242 (it follows from (354)), y3.3 = —%, Ya,3 = —yf‘;’il (356). Thus, we
get: 7 7
z 142 z 142 1+ 1+
(1 n 3,2 n 3,2) 1 4,2 + 4,2) = (1+ Ys3,2 + y372> 1 Ya,2 + y4,2)_ (377)
240 1+ 240 232 1+ 239 Ya2 14+ yao Y32  1+ys30
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Denote by T the divisor of (F*)?2 x (F*)? given by (377). It is easy

23,2,%4,2 Y3,2,Y4,2

p1 % Py ((Hi 0 51) 7' M(Q1) Xy (6) (H3 0 s2) " M(Q2)) C T.

that

(378)

As we know (H;osy) " M(Q1) x (Hios2) 'M(Qz) = S x §' is an irreducible variety and p; x p| is dominant.
Thus, we get that dimg(H{ 0s1) " M(Q1) Xy (6) (H3 0s2) "' M(Q2) < 3. Using similar arguments, one can show
that dimp(Hj 0 51) "' M(Q;) Xy (s) (Hj 0 82) M (Q;) < 3,4, = 1,2. Therefore, we have proved the following

proposition:

Proposition 118. Dimension of any component of Es(fs) which corresponds to the first case, is less or equal

to 3.

Consider the second case. Without loss of generality, we can fix the partition 6 : {1,2,3} U {4,5,6}.

Proposition 119. There are only two mazximal 0-subquivers:
3 3

N
S
[N}
W

Ju—
ot
=

ot

6  subquiver Q1 6  subquiver Qo

Proof. Consider maximal 8-subquiver @@ As we know, any l.c.c. of @ has at least two vertices. Thus, we have
only two l.c.c. and every l.c.c. has three vertices. Considering different ordering on the set of l.c.c. gives us the

proof.

One can show that (H;)"'M(Q1) is given by equations:

24,2 24,3 24,2 24,3
I+z42+243=014+—"+—"=0,1+—"+—
22,2 22,3 23,2 23,3
25,2 25,3 25,2 25,3
1+Z5,2+2573:0,1+7+7:0,1+7+7
22,2 22,3 23,2 23,3
26,2 26,3 26,2 26,3
1+262+23=0,1+—"+—">=0,1+—"—+—
22,2 22,3 23,2 23,3

(HF)"1M(Q2) is defined by equations:
1 1 222 | 223 232 | 233
1+—4+— =014 =+ —=0,1+ — 4+ —
24,2 24,3 24,2 24,3 24,2 24,3
1 1 222 | 22,3 232 | 23,3
1+—4+—=014 =+ =01+ =4 —=
25,2 25,3 25,2 25,3 25,2 25,3
1 1 Z22 %23 232 | 233
1+—4+— =014+ ==+ —==0,1+ — 4+ —
26,2 26,3 26,2 26,3 26,2 26,3

Prove the following useful lemma:

Lemma 120. Consider the following system of equations over variables ai,as:

1+a1+a2:0,1+ﬂ+%:0714'&"'%:0,&:‘7331‘7%6}7*-
To

Z1 U1 Y2

Then we have the following cases:
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:O’

:0’

=0.

:0’

:0,

=0.

O

(379)

(380)

(381)

(382)

(383)

(384)

(385)



11 1
rank [1 o= | =2, (386)
1 L L
Y1 Y2

then system (385) has at more one solution

o if x1 = xy = y1 = yo = l(i.e. rank of matriz is 1), then system (385) has the following solutions:
(al,ag =—-1- a1)7a1 75 07—1.

o if
1 1 1
det ({1 = 5] #0, (387)
1 L L
Y1 Y2
then system (385) has no solution.
Proof. Straightforward. O
Corollary 121. Consider system over variables ay,as:
1 1
I+ —+—=01+24+2_g14+L 4,82 (388)
ay ao a1 a2 ai a2
Then we have the following statements:
o if
1 1 1
rank [1 a1 29| =2, (389)
L vy v

then system (388) has at more one solution

o if x1 = xy = y1 = yo = l(i.e. rank of matriz is 1), then system (388) has the following solutions:

(a17a2 = —11721)7&1 7é 07 -1
o if
1 1 1
det {1 x1 x| #0, (390)
1y oy

then system (388) has no solution.

For studying (Hj o s1) ' M(Q1), we will study two cases:

1 1 1
rank [ 1 21 22| =2, (391)
L oy oy

.gjlzng:yl:yQ:l

Consider the first case. In this case, we have the following relations: 242 = 252 = 26,2,24,3 = 253 = 26,3. We
have the following system of equations for (H; o s1) 1M (Q1):

1 1 3
1+2272+2’372+3Z47210714’74’74’7:0, (392)
Z22 232  Z42
1 1 3
1+293+233+3243=0,14+—+ —+ — =0, (393)

223 233 243
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22,3 23,3 24,3 22,2 23,2 24,2
4+ —=4+3—==0,1+ + —==4+3—==0, (394)
22,2 23,2 24,2 22,3 23,3 24,3

1+
and equations (382). Prove that this system has no solutions. One can check the following identity:

1 1 |, 222 232 1 1 |, 223 233
22t a2)(—+ —— )=+ )= (3 +m3)(—+—)(—+ ) 395
(22, )(22,3 23,3 )(22,3 23,3) ( )(22,2 23,2 )(22,2 23,2) (395)

Using this identity, we get the following equation:

3 z 3 z
(1+3242)(1 4+ —)(1+3222) — (14 3243) 1+ )1 +322) =0 (396)
24,3 24,2 24,2 24,3
Simplifying this equation, we obtain the following three cases:
L] 2’472 - 1,
L] 2’473 == 1,
® 243 = 242
Assume that z4 3 = 1. In this case, we get that 24, = -2, - + L =4 L 4 L1 — %, 1-24+-L =90
’ ’ 223 23,3 22,2 23,2 Z2.2 22,3
and 1 — 2322 + Z313 = 0. Summarizing two last equations, we get
1 1 1 1 1
0=2-2(—+—)+(—+—)=2-2--+(-4)=-3 397
(22’2 23’2) (22’3 23’3) 5 T (=4) (397)

Contradiction. Analogous arguments show that (H;)"'M(Q;) = 0 and (H;f)"'M(Q2) = 0. Thus, we have
proved the following proposition:

Proposition 122. Component of Ea(fs) corresponds to the second case, is empty.
Therefore, we have proved the following

Proposition 123. dimpFs(fs) < 3.

12 Appendix C.

12.1 Local properties of standard orthogonal pair.

In this subsection we will construct point zy € Z such that o’ o p~1 0 0’ 0 p acts on the tangent space T,,~Z

trivially. This point corresponds to standard orthogonal pair up to permutation of rows.

Let us formulate conditions for point 2o € Z allowing to deduce that 0’0o p~' oo’ op acts on the tangent space
T.,Z trivially. Firstly, let us formulate conditions for determination of action do’ on the tangent space T, Z.
Fix some point pt € X(6,6). Denote by 2, 2 the images pri(pt),pri o o (pt) € X (3,6) and 2z, z; the image
of 2/, 2" under natural projection 7 : X(3,6) — Z. Then agf)(u(zo)) = u(z1) € u(Z) and using proposition 100,
we get that ag’) ofio((z0) = fio C(z1). Thus, o'(z) = z1. Consider differential of o/ at point zo. We have the
following formula:

Ao’y = (d0) o (df) P odolW odfiod( : T, Z — T, Z. (398)

Therefore, for definition of do’ we need bijectivity of dz and injectivity of dji. Recall that po ((Z) = ﬁ(Z ) is

ag’)—invariant subvariety of Y(3) Xy Y(3). It can be shown in usual way that dag’)
(3) . _ _

405" (Tof(z0)) = ThoZ(er):

Note the following remarks.

is an isomorphism. Thus,
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e Assume that dimpT, X (3,6) = dimFTC(z,)f( =dimpT,, Z = dimT,, Z = 4, i.e. 2/,{(2), z1,7(2") = 2z are
smooth points of X (3,6), X, Z and Z respectively. Using diagram (240), we obtain that d7od{ = d¢od.
Thus, if d7, d¢ and dr are isomorphism, then d( is isomorphism too.

e If point 2z’ € X(3,6) is smooth and stabilizer of z’ under action of Sép) is trivial, then point 7(z') = 29 € Z
is smooth and map dr is an isomorphism. Analogously, if point ((2’) € X is smooth and stabilizer of
¢(2") under action of S:gp) is trivial, then point {(zp) is smooth and d7 is an isomorphism.

e Using (240), we get the decomposition: d® = dz o dw. Thus, if d® is injective and d7 is an isomorphism,
then dp is injective.

Thus, if we take non-singular point z’ € X(3,6) such that stabilizer Stsép) () = 1, d¢ is an isomorphism,
d® is an immersion ,then do’ is well-defined morphism: T,,Z — T, Z.

Firstly, let us check that morphism d( is an isomorphism. For this purpose, let us describe the maps in
suitable coordinates. Morphism: (pry,pri o o)) : X(6,6) — X(3,6) Xy ) X(3,6) is birational. In terms of
matrices, this birational morphism means decomposition of matrix of size 6 x 6 into two matrices of size 3 X 6,
i.e. morphism: pr = (pri,prioo®) : X(6,6) — X(3,6) Xy (6) X (3,6) is defined in terms of matrices by the
following formula:

1 1 .. 1 1 1 1 1 1

xT X
1 211 ... w15 - ( 1z 712 7 1 25 o ) (399)
1 T51 ... I55 1 Ts51 T52 1 zig %i

In terms of matrices, birational morphism: ¢ : X(3,6) — X = X (3,3) Xy (3) X(3,3) means the decomposition
of matrix of type 3 x 6 into two matrices of type 3 x 3 in the following manner:

1 1 1 1 1 1 1 1 1
Bl S SRR I oo o |) (400)
1 w51 x5 1 on 22 oo

Consider diagram (235). Recall that Y (3) is the subvariety of F® defined by equation ABC = 3. Morphism
@9 o T is defined by formulas:

1 1
T11 T21
1 1
T12 T22
C=(1+ 2L T2y 4 212 P22, (403)
12 29 11 21
1 1 T x
a= 1+ +xa)1+—+—)1+ 2+ 22 (404)
12 22 T11 21
1 1 T x
B=(14—+—)1+z24z00)(1 + =L + 21 (405)
T11 T21 T12 Z22

We get the analogous formulas for %, i—i, %, % Tnvolution o' is defined by rule: Ug’) :A— AB —

B,C — C,a — —a,8 — —p. Thus, for fixed point t = (t1,t2) € X = X(3,3) xy(3) X(3,3) such that
pa0T(ty) = ag’) o ¢ 07(t2) =y € Y(3) we have the following isomorphism:

Ty (.0 X = Ker(dgs 0 d7, —dol) 0 Ao 0 dr) : Ty, X(3,3) ® Th, X (3,3) — T,V (3) (406)
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Consider the point pt € X (6,6) given by matrix:

1 1 1 1 1
1 € € —1 e €
1 -1 1 -1 1 -1
pt = 1 & & 1 & ¢ =1 (407)
1 ¢t e 1 & €
1 € e 1 € &
In this case,
1 1 1 1 1
1 € € 1 € €
1 -1 1 1 -1 1
2 =pri(pt) = 1 & " =prioc® (pt) = 1 & A~ 4 (408)
1 €2 1 et €2
1 e ¢t 1 €2 €t

Lemma 124. 2’ is a smooth point of X(3,6), i.e. dimpT,, X (3,6) = 4.

Proof. As we know, X (3,6) is a subvariety of (F*)!° defined by equations (243), (244), (245). Thus, tangent
space T, X (3,6) is a kernel of matrix:

1 1 1 1 1 0 0 0 0 0
e -1 € e € 0 0 0 0 0
0 0 0 0 0o 1 1 1 1 1
0 0 0 0 0 & -1 € € € (409)
et 1 &€ d e 1 11 -1 -1
-1 -1 -1 -1 -1 €& -1 e 2
One can check that rank of this matrix is 6. Hence, 2’ is a smooth point. O
Recall that there are two-dimensional deformations of pt:
1 1 1 1 1 1 1 1 1 1 1 1
1 ae be2 —1 ae* bed 1 ce € —c e ce
|t = b =1« | ., . |1 -1 1 -1 1 -1
T(a,b) = 1 ae® be* —1 a€e®  be (e, d) = 1 dé® € —d & de |’ (410)
1 & € 1 e & 1 ce* € ¢ € ce?
1 & € 1 e & 1 de & d & dét

where a,b,c,d € F*. As we know, T'(a,b) N T'(c,d) = pt in X(6,6). It is well-known that dimT,, X (6,6) = 4
(cf.7?7). One can check that we have the following isomorphism of tangent spaces:

TpeT(a,b) & Ty T' (¢, d) = T, X (6,6). (411)
Calealate pry(T(0.0) = i(a.5) & X(3,0).pr1 2 0 (T(a:8) = t{a.8) € X(3.0:pm(T'(e.d) = V(e.d) <
X(3,6),pr1 0 a(p)( (c,d)) =t'(1,1) € X(3,6), where t(a,b) and '(c,d) have the following type:
1 1 1 1 1 1
1 ae be? 1 ce ¢
1 —a b , 1 -1 1
1 aed b64 N (C’ d) 11 deé 64 (412)
1 & € 1 cet €
1 e ¢ 1 de? ¢
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It is easy that ¢(a,b) Nt'(¢c,d) = 2z’ in X(3,6). Also, we have the following isomorphism for tangent spaces:
T.t(a,b) ® Tyt (c,d) = T X (3,6). (413)

Calculate image of 2, ¢(a,b), (¢, d) under morphism (:

1 1 1 1 1 1
(b)) = (t(ab) = [1 ac b | b@h) =1 L &) (414)
1 —a b 1 —% %
1 1 1 1 1 1
(H(ed) = Uied =1 c ] ted=|1 £ ) (415)
1 -1 1 1 -1 1
1 1 1 1 1 1
(Z)=(CENn=t0,1)=[1 ¢ ], ((Fa=t1,1)=(1 & ) (416)
1 -1 1 1 -1 1

Let us note the following property of point {(z'):
Lemma 125. ((2') € X is a smooth point.

Proof. Let us calculate tangent space TC(Z/))N(. Let y € Y (3) be the point ¢oo7({(2")1) = crg’) opooT(((2')2). As
we know from (406), we have to calculate d¢o at point ¢(z'); and dag) odgy odr at point ((z')s. As we know,
X(3,3) = (F*)* and Y(3) C F5. Tt is easy that map: (dggor, —doty odgeodr) : Tr(a, X(3,3)® T2, X (3,3) =
F® — T,Y(3) C F® is defined by matrix 8 x 5. Let us order variables as follows: rows correspond to coordinates
A, B,C,a, B, columns correspond to coordinates x11,T21, T12, Ta TsL Tz T2 of X(3,3) x X(3,3). It is

T22> 2510 2310 a2 wa
easy that dag) :T,Y(3) = qu)(y)Y(B) is a matrix:

100 0 O©
010 0 0
001 0 0 (417)
000 —1 0
000 0 -1

It can be shown in usual way that matrices of d¢y o dr at points ((2’); and ((2')2

0 <= 0 0 =< 0 0 0

0 0 21-¢) <= 0 0 -1 0

0 —<-1 0 S R I R O =i Sy (418)
0 0 2 2¢l 0 0 -22 -2

0 0 2¢2 2€° 0 0 —2€ —2€

-1 1—¢?
0 - 0 0 - 0 0 0
0 0 21-&) <=t 0 0 =1 ¢
0 _6271 0 _e—1 e2—1 0 62;1 0 (419)
0 0 2 2¢* 0 0 —22 -2
0 0 2¢? 2¢° 0 0 —2¢ —2¢

One can see that rank of submatrix generated by second, third, forth and eighth columns is 4. Thus, point ((2’)
is a smooth. O
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Using this lemma and some trivial computations, we get the following isomorphism of vector spaces:

Thus, d¢|,- is an isomorphism
Secondly, consider morphism: d® : T¢(.nX — Taoc»)Y (3) Xy Y(3). As we know, morphism & is defined
by the rule: ®(¢(2)) = (¢2(¢(2")1, $2(¢(2)2)), where ¢2 is given by formulas:

1 1
T11  T12
1 1
To1  T22
T T T T
C=@1+—22+22)1+ 2+ =22 (423)
T21 €29 11 Z12
1 1 T x
o= (14— 4 —)(1+z01 + m20)(1 + L + 212 (424)
11 Tr12 21 22
1 1 T T
B=1+an+z)(1+—+-—)1+2+2). (425)
To1  T22 T11  T12

It is easy that TC(Z/))A(: C F® and Tpoc(.nY (3) xy Y (3) C F1O. Therefore, d® is defined by matrix of type 8 x 10.
It is easy that d®|¢(.y = dda|c(zr), ® do2|c(2r), One can calculate that deg, at points ((z)1 and ((z’)2 are given
by matrices:

0 —2 0 0 0 2951 0 0

0O 0 0 0 0 0 0 0

o 0 o0 o1, o 0 0 0 (426)
22 25 -2 2¢t 2t —2¢t —2 2¢2
2¢° 2 2 26 —9¢t 2 2 —2¢

One can check that intersection of the kernel of matrix of d®|¢(./y = da|c(zr), ® dgalc(zry, and Tc(z’))? is 0.
Thus, restriction of d® to T¢(.) X is injective.
Thirdly, one can check that St . (2) is trivial. Thus, T%,Z is 4-dimensional. As we know, pry oo (pt) = 2.
3

And hence, u(zg) = al(f) (u(20)). Using proposition 100, we get that Ug’) o fioC(z0) = JioC(z). Therefore,

we obtain that do’(7T,,Z) = T.,Z. It is easy that there is a decomposition of T, Z into direct sum of V; =
dm(Te.n¢(t(a,b))) and V_ = dn (T .1 ((t'(c,d))). One can check that V; and V_ are subspaces corresponding
to eigenvalue 1 and —1 of do’ respectively.

Finally, consider involutions ¢’ and p~! o ¢’ o p of Z. Using proposition 100, we get the following identities:

o (m(t(a,8))) = w(t(a,), ' (x(¢ (e, ) = w(¢(+, 7)) (427)

for o’. And L1
p~toa op(n(t(a,b)) =m(t(a,b),p~ 00’0 p(n(t'(c,d))) = m(#(Z, 7)) (428)

1

Therefore, 0’ o p~t 00’ 0 p acts on 7(t(a, b)) and 7(t'(c,d)) trivially. And hence, d(c’ o p~t o0’ 0 p) acts on T, Z

trivially. Thus, we have proved the following proposition:

Proposition 126. d(¢’ o p~t oo’ 0p) acts on T, Z trivially.

As we know from ??, morphism ¢’ o p~!

property of morphism of finite order:

o ¢’ o p has finite order. Let us formulate following well-known

Proposition 127. (¢f.??) Let v be the automorphism of finite order of variety V. Assume that v € V' such
that y(v) = v and dvy : T,(V) = T,(V) is identity linear map. Then ~y is identity.
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