Speaker: | Akishi Ikeda (U Tokyo) |
---|---|
Title: | Stability conditions for an $N$-Calabi-Yau algebra of the $A_n$-quiver |
Date (JST): | Mon, Apr 14, 2014, 13:15 - 14:45 |
Place: | Seminar Room B |
Abstract: |
Recently, Bridgeland and Smith proved that the moduli spaces of quadratic differentials with simple zeros can be identified with the spaces of stability conditions on $3$-Calabi-Yau categories associated with triangulations of marked bordered surfaces. In this talk, by using some generalizations of Bridgeland-Smith's theory, we prove that the universal cover of the space of polynomials of degree $(n+1)$ with simple zeros is isomorphic to the space of stability conditions on the derived category of finite dimensional dg modules over the Ginzburg $N$-Calabi-Yau dg algebra associated with the $A_n$-quiver. |