Abstract: |
The Maxwell-Boltzmann ergodic hypothesis aimed to lay a foundation under statistical mechanics, which is at a microscopic scale a deterministic system. Similar complexity was discovered by Poincaré in celestial mechanics and by Hadamard in the motion of a free particle in a negatively curved space. We start with a guided tour of the history of the subject from various perspectives and then discuss the central mechanism that produces pseudorandom behavior in these deterministic systems, the Hopf argument. It has been known to extend well beyond the scope of its initial application in 1939, and we show that it also leads to much stronger conclusions: Not only do time averages of observables coincide with space averages (which was the purpose for making the ergodic hypothesis), but any finite number of observables will become decorrelated with time. That is, the Hopf argument does not only yield ergodicity but mixing, and often mixing of all orders. |