Abstract: |
Accurate measurements of neutrino mass eigenstates could offer a window into physics beyond the Standard Model of particl physics. Apart from oscillation experiments, cosmological probes offer a promising avenue for neutrino mass measurements. One such probe is the effect of massive neutrinos on cosmological structure formation. In this talk, I will first discuss a technique which can simulate cosmologies with massive neutrinos accurately down to scales where the clustering of neutrinos is fully nonlinear, while not suffering from shot noise effects that are seen in standard N-body simulations. I will then talk about a specific observable signature that massive neutrinos produce on Large Scale Structure - a strong scale dependent bias of voids even on large scales. |