Speaker: | Dmitri Panov (King's College London) |
---|---|
Title: | Hyperbolic geometry and symplectic Calabi-Yau varieties |
Date (JST): | Fri, Nov 18, 2011, 16:00 - 18:00 |
Place: | Balcony A |
Abstract: |
A question of Gromov asks: Is it true that every compact manifold is a quotient of a hyperbolic space by a discrete group of isometries? I will explain how one can use this question to prove that the fundamental groups of compact symplectic Calabi-Yau six-manifolds can be arbitrary. The talk is based on the joint work with Anton Petrunin and Joel Fine. The references: arXiv:1108.5964: The diversity of symplectic Calabi-Yau six-manifolds arXiv:1104.4814: Telescopic actions arXiv:0802.3648: Symplectic Calabi-Yau manifolds, minimal surfaces and the hyperbolic geometry of the conifold |